Пошаговое объяснение:
НОД (18; 21) = 3.
Как найти наибольший общий делитель для 18 и 21
Разложим на множители 18
18 = 2 • 3 • 3
Разложим на множители 21
21 = 3 • 7
Выберем одинаковые множители в обоих числах.
3
Находим произведение одинаковых множителей и записываем ответ
НОД (18; 21) = 3 = 3
НОК (Наименьшее общее кратное) 18 и 21
Наименьшим общим кратным (НОК) 18 и 21 называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел (18 и 21).
НОК (18, 21) = 126
Как найти наименьшее общее кратное для 18 и 21
Разложим на множители 18
18 = 2 • 3 • 3
Разложим на множители 21
21 = 3 • 7
Выберем в разложении меньшего числа (18) множители, которые не вошли в разложение
2 , 3
Добавим эти множители в разложение бóльшего числа
3 , 7 , 2 , 3
Полученное произведение запишем в ответ.
НОК (18, 21) = 3 • 7 • 2 • 3 = 126
Если 15 оставшихся яблок последовательно раздать детям, то двум последним не хватит, так как если у последнего взять одно яблоко и отдать предпоследнему, то, как раз и окажется, что всем, кроме последнего досталось по 5 яблок, а у последнего будет только 3.
Значит детей на два больше, чем 15, итак детей – 17.
Значит яблок 17*4+15 = 68+15 = 83.
Заметим, что если бы яблок было 85, то их можно было бы раздать поровну всем по 5 яблок.
Но их всего 83, поэтому последнему достанется только 3 яблока, если всем предыдущим раздать по 5, как это и сказано в условии.
О т в е т : 83 яблока на 17 детей.