Положение центра вписанной окружности определим, узнав высоту трапеции.
Тогда r = 4/2 = 2. Окружность, описанная около трапеции, является одновременно и описанной около треугольника, стороны которого - диагональ, боковая сторона и большее основание. Диагональ равна:
Радиус описанной окружности равен:
Площадь треугольника равна: S = (1/2)*8*4 = 16 кв.ед. Тогда Так как центр описанной окружности лежит на оси симметрии трапеции. то определим его положение: H+Δ = √(R² - 1²) = √( 16.01563-1) = √ 15.01563 = 3.875. Отсюда Δ = 3.875 - 4 = -0,125. Значит, центр этой окружности лежит внутри контура трапеции - на 0,125 выше нижнего основания. ответ: расстояние между центрами вписанной и описанной окружностей равно 2-0,125 = 1,875.
Треугольники будут подобны по 2-му признаку(Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны), а из свойств подобия треугольников, получается, что отношение периметров и длин биссектрис , медиан , высот и серединных перпендикуляров равно коэффициенту подобия. А коэффициент подобия, в данном случае, равен 2(свойство средней линии). значит периметр треугольника ВMN равен половине периметра треугольника АВС: 4 корня из 7: 2= 2 корня из 7
ответ:395км
Пошаговое объяснение:100-75=25%
130км-25%
Х- 100%
100×130/25=395км