Відповідь:Основанием прямоугольного параллелепипеда является параллелограмм со сторонами 3 м и 5 м и углом между ними 60º. Площадь большего диагонального сечения равна 63 м². Найдите площадь боковой поверхности параллелепипеда.
Решение.
Найдем площадь боковой поверхности. Нам известна площадь большего диагонального сечения. Чтобы найти площадь диагонального сечения нужно умножить высоту прямоугольного параллелепипеда на диагональ основания. Найдём диагональ основания по теореме косинусов
c²=a²+b²-2ab*cos(180-α)
c²=3²+5²-2*3*5*cos(180-60)
c²=9+25-30*cos120
c²=34-30*()
c²=34+15
c²=49
c=7 (м) -диагональ основания
Значит высота прямоугольного параллелепипеда равна
A) (x-2)/6 = (2x+3)/8, общий знамен. 24, получаем уравнение 4*(x-2)=3*(2x+3), 4 и 3 дополнительные множители раскрываем скобки: 4x-8=6x+9, 4x-6x=9+8, -2x=17, x=-8,5 в)Исходя из условия получаем, что 2-е выражение больше 1-го на 2, следовательно получается уравнение 3/4-5/6*z-(1/2*z-2/3)=2. Раскрывая скобки получаем : 3/4-5/6*z-1/2*z+2/3=2, приводим к общему знаменателю: 12. Умножаем каждый член уравнения на 12: 3/4*12-5/6*12*z-1/2*z*12+2/3*12=24 9--10z-6z+8=24 -16z+17=24 -16z=24-17 -16z=7 z=-7/16 б) 17-5у=-(17у+19) Раскрываем скобки: 17-5у=-17у-19, -5у+17у=-19-17, 12у=-36, у= -36/12=-3 г) (2,6р-9,8)/р=4, умножаем обе части выражения на р≠0 2,6р-9,8=4р 2,6р-4р=9,8 -1,4р= 9,8 р=9,8/(-1,4) р=-7
Відповідь:Основанием прямоугольного параллелепипеда является параллелограмм со сторонами 3 м и 5 м и углом между ними 60º. Площадь большего диагонального сечения равна 63 м². Найдите площадь боковой поверхности параллелепипеда.
Решение.
Найдем площадь боковой поверхности. Нам известна площадь большего диагонального сечения. Чтобы найти площадь диагонального сечения нужно умножить высоту прямоугольного параллелепипеда на диагональ основания. Найдём диагональ основания по теореме косинусов
c²=a²+b²-2ab*cos(180-α)
c²=3²+5²-2*3*5*cos(180-60)
c²=9+25-30*cos120
c²=34-30*()
c²=34+15
c²=49
c=7 (м) -диагональ основания
Значит высота прямоугольного параллелепипеда равна
h=63:7=9 м
Значит площадь боковой поверхности равна
S=2*(ah+bh)=2*(3*9+5*9)=2*(27+45)=2*72=144 м²