Число 1001 разложим на простые множители
7 * 11 * 13 = 1001
Отсюда имеем 4 варианта
1) 7 * 11 * 13 = 1001
2) 7 * 143 = 1001
3) 11 * 91 = 1 001
4) 13 * 77 = 1001
1) Рассмотрим случай 7 * 11 * 13 = 1001
Это значит, что известны три слагаемых 7; 11; 13.
Всего слагаемых 1928.
1928 – 3 = 1925 - это количество остальных слагаемых.
Чтобы произведение всех слагаемых было равно 1001, значит, каждое из остальных – единицы, т.е. 1925 единиц в сумме.
Проверим сумму:
7 + 11 + 13 + 1925 = 1956 ≠ 2016
2) Рассмотрим случай 7 * 143 = 1001
Это значит, что известны два слагаемых 7; 143.
Всего слагаемых 1928.
1928 – 2 = 1926 - это количество остальных слагаемых.
Чтобы произведение всех слагаемых было равно 1001, значит, каждое из остальных – единицы, т.е. 1926 единиц в сумме.
Проверим сумму:
7 + 143 + 1926 = 2076 ≠ 2016
3) Рассмотрим случай 11 * 91 = 1001
Это значит, что известны два слагаемых 11; 91.
Всего слагаемых 1928.
1928 – 2 = 1926 - это количество остальных слагаемых.
Чтобы произведение всех слагаемых было равно 1001, значит, каждое из остальных – единицы, т.е. 1926 единиц в сумме.
Проверим сумму:
11 + 91 + 1926 = 2028 ≠ 2016
4) Рассмотрим случай 13 * 77 = 1001
Это значит, что известны два слагаемых 13; 77.
Всего слагаемых 1928.
1928 – 2 = 1926 - это количество остальных слагаемых.
Чтобы произведение всех слагаемых было равно 1001, значит, каждое из остальных – единицы, т.е. 1926 единиц в сумме.
Проверим сумму:
13 + 77 + 1926 = 2016 - удовлетворяет условию!
1 – наименьшее слагаемое.
77 – наибольшее слагаемое.
1 + 77 = 78 - искомая сумма.
ответ: 78.
Пусть х лет сыну, тогда 4х лет отцу. Через 20 лет (х + 20) лет будет сыну, (4х + 20) лет будет отцу, и он будет старше сына в 2 раза. Уравнение:
4х + 20 = (х + 20) · 2
4х + 20 = 2х + 40
4х - 2х = 40 - 20
2х = 20
х = 20 : 2
х = 10 (лет) - сыну
4х = 4 · 10 = 40 (лет) - отцу
Вiдповiдь: 40 рокiв батьковi.