Допустим, что такое сложение существует.
Запишем сложение в виде столбика:
М Э Х Э Э Л Э
У Ч У У Т А Л
5 0 5 2 0 2 0
Для удобства пронумеруем разряды: единицы будут 1, десятки -- 2 и так далее до 7.
1. Рассмотрим 1 разряд. "Э + Л = 0".
Это возможно в 2-х случаях:
Э = Л = 0 (не подходит, так как цифры должны быть разные);
Э + Л = 10 (тогда десяток перейдёт на разряд вперёд и останется 0).
Остаётся Э + Л = 10.
2. Рассмотрим 3 разряд. "Э + Т = 0". Возможно три случая:
Э = Т = 0 (не подходит, так как цифры должны быть разные);
Э + Т = 10 (не подходит, так как тогда Т = Л (пункт 1))
Э + Т = 9 (плюс единица из переполнения)
Остаётся Э + Т = 9.
3. Рассмотрим 6 разряд. "Э + Ч = 0". Возможно три случая:
Э = Ч = 0 (не подходит, так как цифры должны быть разные);
Э + Ч = 10 (не подходит, так как тогда Ч = Л (пункт 1))
Э + Ч = 9 (не подходит, так как тогда Ч = Т (пункт 2))
Таким образом, "Э + Ч ≠ 0", а это противоречит условию.
Значит, такого решения быть не может. Что и требовалось доказать.
Найдём сторону квадрата:
S = a² ⇒ a² = S ⇒ a = √S = √36 = 6 (см)
Найдём периметр квадрата:
P = 4a = 4 · 6 = 24 (см)
Пусть x (см) - ширина прямоугольника, тогда x + 8 (см) - длина прямоугольника. Так как периметр прямоугольника равен периметру квадрата и находится по формуле P = (a + b) · 2, то составим и решим уравнение:
(x + 8 + x) · 2 = 24
2x + 8 = 24 ÷ 2
2x + 8 = 12
2x = 12 - 8
2x = 4
x = 4 ÷ 2
x = 2 (см) - ширина прямоугольника
2 + 8 = 10 (см) - длина прямоугольника
ОТВЕТ: 10 см - длина, 2 см - ширина
1)57,75
Пошаговое объяснение:
1)64*3=192(км)-проехал за 3 часа
2)54*5=270(км)-проехал за 5 часов
3)3+5=8(ч)-всего в пути
4)192+270=462(км)- проехал всего
5)462:8=57,75(км)