Пошаговое объяснение:
Эта задачка не на комбинаторику и теорию вероятности, а на метод от противного. Предположим что у нас на доске менее 3 шашек одного цвета, но тогда шашек другого цвета не менее чем 5-2=3,таким образом мы приходим к противоречию. Значит на доске осталось не менее трех шашек одного цвета. Или так:если положить,что на доске осталось не более двух шашек каждого цвета, то их сумма не больше чем 2+2=4<5,то есть мы приходим к противоречию.Этот будет работать и для большего числа шашек. Для 9 шашек, на доске останется не менее 5 шашек. Для 99 шашек не менее 50. То есть на доске не менее чем (n+1)/2 шашек для нечетного n, и n/2 для четного n одного цвета. n-число шашек,что осталось на доске.
А) -6
Пошаговое объяснение:
После долгого и муторного раскрытия скобок получаем:
x⁴+6x³+10x²+30x+25=0
теперь раскладываем: 6x³=5x³+x³; 10x²=5x²+5x²; 30x=5x+25x. получаем:
x⁴+x³+5x³+5x²+5x²+5x+25x+25=0
x³(x+1) + 5x²(x+1) + 5x (x+1) +25(x+1)=0
(x+1)(x³+5x²+5x+25)=0
Очевидно, что первый корень - x₁=-1
Решаем второе уравнение:
(x³+5x²+5x+25)=0
x²(x+5) +5(x+5)=0
(x²+5)(x+5)=0
Получаем x₂=-5, первая скобка ничего не дает, x≠R, так как квадрат числа не может быть отрицательным(x²=-5)
Тогда получаем x₂=-5, x₁=-1
x₁+x₂=-1-5=-6
ответ: -6
Найдем разность арифметической прогрессии(d):-15-(-3)=-12
Чтобы найти следующий член нужно всего лишь к - 15 прибавить - 12:
-15+(-12)=-27
ответ:-27