При возведении в квадрат могли появиться посторонние корни. Поэтому сделаем проверку.
x₁=-3; √(4-10*(-3)-9)=-2*(-3)-1 ; 5=5, значит, x₁=-3 -корень исходного уравнения. Второй корень не является корнем исходного уравнения, т.к. правая часть √(4-10х-х²)=-2х-1 при х=1/5 - есть число отрицательное, чего быть не может, т.к. левая часть не может быть отрицательной.
Будем считать, что таблица расположеня так, что строки - 8 клеток, а столбики 5 клеток. Заметим, что 3 и 1 - нечетные числа. поскольку их в строке 8, то и сумма во всех строках четна. Максимальная сумма в строчке равна 3 * 8 = 24. Значит. что суммы могут быть: 7,14,21. Единственное четное число - 14. Значит сумма всех строчек - 14 * 5 = 70.Размышляя аналогично, легко понять, что сумма во всех строка нечетна, то есть равна либо 7, либо 21. 21 мы получит не можем, так как максимальное значение - 3 * 5 = 15. Значит сумма всех столбиков 7 * 8 = 56. А сумма всех столбиков в таблице должна совпадать с суммой всех сточек. Противоречие.
√(4-10х-х²)=-2х-1 ;
Возведем в квадрат обе части
(4-10х-х²)=(-2х-1)²
4-10х-х²=4х²+4х+1
5х²+14х-3=0
х₁,₂=(-7±√(49+15))/5=(-7±8)/5
x₁=-3; x₂=1/5
При возведении в квадрат могли появиться посторонние корни. Поэтому сделаем проверку.
x₁=-3; √(4-10*(-3)-9)=-2*(-3)-1 ; 5=5, значит, x₁=-3 -корень исходного уравнения. Второй корень не является корнем исходного уравнения, т.к. правая часть √(4-10х-х²)=-2х-1 при х=1/5 - есть число отрицательное, чего быть не может, т.к. левая часть не может быть отрицательной.
Значит, корень один. И он равен -3.
ответ -3