М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Валера505
Валера505
23.04.2020 18:33 •  Математика

Постройти графики у=8/х у=2/х у=5/х у=-2х у=-5/х у=-8/х​

👇
Открыть все ответы
Ответ:
GrankaleS
GrankaleS
23.04.2020

Пошаговое объяснение:

a)

\displaystyle \int {\frac{sinx}{\sqrt[3]{2cosx+3} } } \, dx =\left[\begin{array}{ccc}u=2cosx+3\\du=-2sinxdx\\\end{array}\right] =-\frac{1}{2} \int{\frac{1}{\sqrt[3]{u} } } \, du=

\displaystyle =-\frac{3u^{2/3}}{4} +C=-\frac{3(2cosx+3)^{3/2}}{4} +C

б) здесь будем использовать два раза ∫fdg=fg - ∫gdf

\int {x^2sinx} \, dx =\left[\begin{array}{ccc}f=x^2;\quad df=2xdx \hfill \\dg=sin(4x)dx;\quad g=-\frac{1}{4}cos(4x) \\\end{array}\right] =

\displaystyle = -\frac{1}{4} x^2cos(4x)+\frac{1}{2} \int {xcos(4x)} \, dx =\left[\begin{array}{ccc}f=x; \quad df=dx \hfill\\dg=cos(4x)dx; \quad g= \frac{1}{4}sin(4x) \\\end{array}\right] =

\displaystyle =-\frac{1}{4} x^2cos(4x)+\frac{1}{8} xsin(4x) -\frac{1}{8} \int {sin(4x)} \, dx =\left[\begin{array}{ccc}u=4x\\du=4dx\\\end{array}\right] =

\displaystyle =-\frac{1}{4} x^2cos(4x)+\frac{1}{8} xsin(4x)-\frac{1}{32} \int {sinu} \, du=

\displaystyle =-\frac{1}{4} x^2cos(4x)+\frac{1}{8} xsin(4x) +\frac{1}{32} cos(4x)+C

в)

\displaystyle \int {\frac{x^2-x+1}{x^4+2x^2-3} } \, dx

разложим на множители знаменатель

\displaystyle \int {\frac{x^2-x+1}{(x-1)(x+1)(x^2+3)} } \, dx

разложим дробь на простейшие и применим линейность к интегралу

\displaystyle =\frac{1}{4} \int {\frac{x+2}{x^2+3} } \, dx -\frac{3}{8} \int {\frac{1}{x+1} } \, dx +\frac{1}{8\int{\frac{1}{x-1} } \, dx } =            (1)

это наш основной интеграл. сюда будем подставлять всё что будем считать по отдельности

1. считаем первый интеграл

\displaystyle \int {\frac{x+2}{x^2+3} } \, dx =\int {\frac{x}{x^2+3} } \, dx +2\int {\frac{1}{x^2+3} } \, dx

\displaystyle \int {\frac{x}{x^2+3} } \, dx =\left[\begin{array}{ccc}u=x^2+3\\du=2xdx\\\end{array}\right] =\frac{1}{2} \int {\frac{1}{u} } \, du=\frac{lnu}{2} =\frac{ln(x^2+3)}{2}+C

\displaystyle \int {\frac{1}{x^2+3} } \, dx =\left[\begin{array}{ccc}u=x/\sqrt{3} \\dx=\sqrt{3du} \\\end{array}\right] =\frac{1}{\sqrt{3} } \int {\frac{1}{u^2+1} } \, du =\frac{arctg(u)}{\sqrt{3} } =\frac{arctg(x/\sqrt{3}) }{\sqrt{3} }++C

вот мы получили первый интеграл

\displaystyle \int {\frac{x+2}{x^2+3} } \, dx =\frac{ln(x^2+3)}{2} +\frac{2arctg(x/\sqrt{3}) }{\sqrt{3} }+C

2. теперь считаем второй интеграл

\displaystyle \int {\frac{1}{x+1} } \, dx =ln(x+1) +C

3. теперь третий

\displaystyle \int {\frac{1}{x-1} } \, dx =ln(x-1) +C

ну вот и теперь всё вычисленное подставляем в интеграл (1) со всеми множителями и подставляем прямо в условие

\displaystyle \int {\frac{x^2-x+1}{x^4+2x^2-3} } \, dx=\frac{ln(x^2+3)}{8} -\frac{3ln(x+1)}{8} +\frac{ln(x-1)}{8} +\frac{arctg(x/\sqrt{3)} }{\sqrt{3} } +C

г) числитель перемножим и поделим каждое слагаемое на знаменатель

\displaystyle \int {\frac{(\sqrt{x} -1)(\sqrt[6]{x}+1) }{\sqrt[3]{x^2} } } \, dx =\int{\bigg (\frac{1}{\sqrt[6]{x} }-\frac{1}{\sqrt{x} } -\frac{1}{\sqrt[3]{x^2} } +1} \bigg )\, dx =

\displaystyle = \frac{6x^{5/6}}{5} -2\sqrt{x} -3\sqrt[3]{x} +x+C

4,5(95 оценок)
Ответ:
victoriaanna1
victoriaanna1
23.04.2020
Die Sommerferien ist meine Lieblingszeit.Die Schule ist schon vorbei und  ich habe viel Freizeit.Im Juni bleibe ich gewöhnlich in der Stadt.Ich schlafe gut aus.Ich verbringe meine Freizeit mit Freunden.Wir gehen oft spazieren,ins Kino oder einkaufen.Zu Hause lese ich ein Buch,lade die Musik herunter oder surfe im Internet.Im Juli fahre ich aufs Land.Dort wohnen meine Großeltern.Ich arbeite gern im Garten.Ich fahre Rad und spiele Badminton.Im August fahre ich mit den Eltern ans Meer.Dort liege ich in der Sonne.Ich schwimme,bade,tauche und spiele Ball.Meine Sommerferien verbringen immer toll.
4,8(89 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ