М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
privitvsim
privitvsim
18.04.2021 17:10 •  Математика

Как решить уравнение:х+0.5×(2.3х-0,4х)=11,7

👇
Ответ:
Vsevolod20141
Vsevolod20141
18.04.2021

ответ:X+0.5(2.3X-0,4X)=11,7《=》X+0.5+1.9X=11,7《=》X+0.95X=11.7《=》1.95X=11.7《=》X=6

4,7(92 оценок)
Открыть все ответы
Ответ:
vadimkaIVA
vadimkaIVA
18.04.2021

Числитель и знаменатель разложим на множители

\lim_{x \to \inft1} \frac{3 x^{2} -2x+1}{ x^{2} -4x+3} =\lim_{x \to \inft1} \frac{(3x+1)*(x-1)}{(x-3)*(x-1)}=\lim_{x \to \inft1} \frac{3x+1}{x-3} = \frac{4}{-2}=-2lim

x→\inft1

x

2

−4x+3

3x

2

−2x+1

=lim

x→\inft1

(x−3)∗(x−1)

(3x+1)∗(x−1)

=lim

x→\inft1

x−3

3x+1

=

−2

4

=−2

2. Числитель и знаменатель разделим на x²

\lim_{x \to \infty} \frac{3 x^{2} +5x+4}{2 x^{2} -x+1} = \lim_{x \to \infty} \frac{3+ \frac{5}{x}+ \frac{4}{ x^{2} } }{2- \frac{1}{x} + \frac{1}{ x^{2} } } = =\lim_{x \to \infty} \frac{3+ \frac{5}{oo}+ \frac{4}{oo^{2} } }{2- \frac{1}{oo} + \frac{1}{ oo^{2} } } = \frac{3}{2}lim

x→∞

2x

2

−x+1

3x

2

+5x+4

=lim

x→∞

2−

x

1

+

x

2

1

3+

x

5

+

x

2

4

==lim

x→∞

2−

oo

1

+

oo

2

1

3+

oo

5

+

oo

2

4

=

2

3

3. Приводим ко второму замечательному пределу

\lim_{x \to \infty} ( \frac{2x-7}{2x-3}) ^{4x+1}= \lim_{x \to \infty} ( \frac{2x-3 -4}{2x-3}) ^{4x+1}= \lim_{x \to \infty} (1- \frac{4}{2x-3} ) ^{4x+1}lim

x→∞

(

2x−3

2x−7

)

4x+1

=lim

x→∞

(

2x−3

2x−3−4

)

4x+1

=lim

x→∞

(1−

2x−3

4

)

4x+1

Пусть t=- \frac{4}{2x-3}t=−

2x−3

4

, откуда x= \frac{3}{2} - \frac{2}{t}x=

2

3

t

2

При этом t→0

Делаем замену

\lim_{t \to \inft0}(1+t)^{7- \frac{8}{t}} =\lim_{t \to \inft0}(1+t) ^{7} *(1+t) ^{- \frac{8}{t}} = =\lim_{t \to \inft0}(1+t) ^{7} *\lim_{t \to \inft0}((1+t)^{\frac{1}{t}} ) ^{-8} =1*( \lim_{t \to \inft0}(1+t)^{\frac{1}{t}} ) ^{-8} =e ^{-8}lim

t→\inft0

(1+t)

7−

t

8

=lim

t→\inft0

(1+t)

7

∗(1+t)

t

8

==lim

t→\inft0

(1+t)

7

∗lim

t→\inft0

((1+t)

t

1

)

−8

=1∗(lim

t→\inft0

(1+t)

t

1

)

−8

=e

−8

4,6(82 оценок)
Ответ:
smirnovakrestin
smirnovakrestin
18.04.2021
Даны точки  A(-1;5) и B(7;-3).
Находим середину отрезка АВ - координаты точки С.
С((-1+7)/2=3; (5-3)/2=1) = (3; 1).
Точка, яка рівновіддалена від точок A и B находится на срединном перпендикуляре СД к отрезку АВ (Д - точка на оси абсцисс).
Угловой коэффициент АВ = Δу/Δх = -8/8 = -1.
Тогда угловой коэффициент СД = -1/(-1) = 1.
Уравнение СД: у = х + в.
Коэффициент в находим, подставив координаты точки С:
1 = 3 + в.
в = 1 - 3 = -2. Уравнение СД: у = х - 2.
Точка Д имеет у = 0, тогда х = 2.

ответ: координати точки, яка належить осі абсцис і рівновіддалена від точок A(-1;5) i B(7;-3): Д(2; 0).
4,7(32 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ