в δ авс ∠асв = 90°. ас и вс — катеты, ав — гипотенуза.
cd — высота треугольника, проведенная к гипотенузе.
ad — проекция катета ас на гипотенузу,
bd — проекция катета вс на гипотенузу.
высота cd делит треугольник авс на два подобных ему (и друг другу) треугольника: δ adc и δ cdb.
из пропорциональности сторон подобных δ adc и δ cdb следует:
ad : cd = cd : bd. отсюда cd2 = ad ∙ bd. говорят: высота прямоугольного треугольника, проведенная к гипотенузе, есть средняя пропорциональная величина между проекциями катетов на гипотенузу.
из подобия δ adc и δ аcb следует:
ad : ac = ac : ab. отсюда ac2 = ab ∙ ad. говорят: каждый катет есть средняя пропорциональная величина между всей гипотенузой и проекцией данного катета на гипотенузу.
аналогично, из подобия δ сdв и δ аcb следует:
bd : bc = bc : ab. отсюда bc2 = ab ∙ bd.
решите :
1. найти высоту прямоугольного треугольника, проведенную к гипотенузе, если она делит гипотенузу на отрезки 25 см и 81 см.
a) 70 см; b) 55 см; c) 65 см; d) 45 см; e) 53 см.
2. высота прямоугольного треугольника, проведенная к гипотенузе, делит гипотенузу на отрезки 9 и 36. определить длину этой высоты.
a) 22,5; b) 19; c) 9; d) 12; e) 18.
4. высота прямоугольного треугольника, проведенная к гипотенузе, равна 22, проекция одного из катетов равна 16. найти проекцию другого катета.
a) 30,25; b) 24,5; c) 18,45; d) 32; e) 32,25.
5. катет прямоугольного треугольника равен 18, а его проекция на гипотенузу 12. найти гипотенузу.
a) 25; b) 24; c) 27; d) 26; e) 21.
6. гипотенуза равна 32. найти катет, проекция которого на гипотенузу равна 2.
a) 8; b) 7; c) 6; d) 5; e) 4.
7. гипотенуза прямоугольного треугольника равна 45. найти катет, проекция которого на гипотенузу равна 9.
8. катет прямоугольного треугольника равен 30. найти расстояние от вершины прямого угла до гипотенузы, если радиус описанной около этого треугольника окружности равен 17.
a) 17; b) 16; c) 15; d) 14; e) 12.
10. гипотенуза прямоугольного треугольника равна 41, а проекция одного из катетов 16. найти длину высоты, проведенной из вершины прямого угла к гипотенузе.
a) 15; b) 18; c) 20; d) 16; e) 12.
a) 80; b) 72; c) 64; d) 81; e) 75.
12. разность проекций катетов на гипотенузу равна 15, а расстояние от вершины прямого угла до гипотенузы равно 4. найти радиус описанной окружности.
a) 7,5; b) 8; c) 6,25; d) 8,5; e) 7.
Масса древесины на одном самосвале=40ц 60кг или4060кг
На комбинат было завезено 20 самосвалов древесины значит
4060*20=81200кг или 81тонна 200кг
масса древесины в одном вагоне в 4 раза больше, значит умножаем массу древесины на 4
4060*4=16240кг или 16 тонн 240кг
для того чтобы узнать сколько древесины было завезено в вагонах, надо
16240*10=162400кг или 162 тонны
400кг
для того, чтобы узнать общую массу древесины складываем массу в вагонах и массу на самосвалах
81200+162400=243600кг или 243тонны 600кг
ответ: общая масса древесины 243тонны 600кг
Удачи!