Найдём длину перпендикуляра из точки пересечения диагоналей ромба на сторону ромба (этот перпендикуляр равен половине высоты ромба). По свойству высоты h прямоугольного треугольника она равна среднему геометрическому из длин отрезков, на которые эта высота делит гипотенузу. h = √(4*25)= √100 = 10 см. Теперь находим длины половин диагоналей ромба как гипотенузы прямоугольных треугольников с катетами 25 и h, и 4 и h. (d1/2) = √(25² + 10²) = √(625 + 100) = √725 = 5√29 см. (d2/2) = √(4² + 10²) = √(16 + 100) = √116 = 2√29 см.
ответ: поскольку игральную кость бросают дважды , то количество все возможных событий: 6*6=36.
посчитаем отдельно : ) найдем сначала вероятность того, что в сумме выпадет 2. таких вариантов выпадения очков мало - {1; 1}
всего благоприятных событий: 1.
вероятность равна: p₁ = 1/36
найдем теперь вероятность того, что в сумме выпадет 3.
в этом случае варианты таковы - {1; 2}, {2; 1} - 2 варианта - благоприятные события.
вероятность: p₂ = 2/36
и вероятность того, что в сумме выпадет 8: {2; 6}, {3; 5}, {4; 4}, {5; 3}, {6; 2}.
p₃ = 5/36
искомая вероятность по теореме сложения:
p = p₁ + p₂ + p₃ = 1/36 + 2/36 + 5/36 = 8/36 = 2/9 ≈ 0,2