Олимпиа́да — крупнейшие международные комплексные спортивные соревнования, которые проводятся каждые четыре года. традиция, существовавшая в древней греции, была возрождена в конце xix века французским общественным деятелем пьером де кубертеном. олимпийские игры, известные также как летние олимпийские игры, проводились каждые четыре года, начиная с 1896, за исключением лет, пришедшихся на мировые войны. в 1924 году были учреждены зимние олимпийские игры, которые первоначально проводились в тот же год, что и летние. однако начиная с 1994 года, время проведения зимних олимпийских игр сдвинуто на два года относительно времени проведения летних игр. в тех же местах проведения олимпиад спустя некоторое время проводятся паралимпийские игры для инвалидов и других людей с ограниченными возможностями. аналогом олимпиад являются также летние, зимние и весенние юношеские олимпийские игры и студенческие универсиады. олимпийская идея и после запрета античных состязаний не исчезла насовсем. например, в в течение xvii века неоднократно проводились «олимпийские» соревнования и состязания. позже похожие соревнования организовывались во франции и греции. тем не менее, это были небольшие мероприятия, носившие, в лучшем случае, региональный характер. первыми настоящими предшественниками современных олимпийских игр являются «олимпии» , которые проводились регулярно в период 1859—1888 годов. идея возрождения олимпийских игр в греции принадлежала поэту панайотису суцосу, воплотил её в жизнь общественный деятель евангелис заппас. в 1766, в результате археологических раскопок в олимпии, были обнаружены спортивные и храмовые сооружения. в 1875 археологические исследования и раскопки продолжились под руководством. в то время в европе были в моде романтическо-идеалистические представления об античности. желание возродить олимпийское мышление и культуру распространилось довольно быстро по всей европе. французский барон пьер де кубертен (фр. pierre de coubertin), осмысливая впоследствии вклад франции, сказал: «германия раскопала то, что осталось от древней олимпии. почему франция не может восстановить старое величие? » . по мнению кубертена, именно слабое состояние французских солдат стало одной из причин поражения французов в франко- войне 1870—1871. он стремился изменить положение с улучшения культуры французов. одновременно с этим, он хотел преодолеть национальный эгоизм и сделать вклад в борьбу за мир и международное взаимопонимание. «молодежь мира» должна была мериться силами в спортивных состязаниях, а не на полях битв. возрождение олимпийских игр казалось в его глазах лучшим решением, чтобы достичь обеих целей. на конгрессе, проведённом 16-23 июня 1894 года в сорбонне (парижский университет) , он представил свои мысли и идеи международной публике. в последний день конгресса было принято решение о том, что первые олимпийские игры современности должны состояться в 1896 году в афинах, в стране-родоначальнице игр — греции. чтобы организовать проведение игр, был основан международный олимпийский комитет (мок) . первым президентом комитета стал грек деметриус викелас, который был президентом до окончания i олимпийских игр 1896 года. генеральным секретарём стал барон пьер де кубертен.
Решение: 1) область определения d(y) : x≠2 2) множество значений функции е (х) : 3) проверим является ли функция периодической: y(x)=x^4/(4-2x) y(-x)=(-x)^4/(4-2(-x))=x^4/(4+x), так как у (х) ≠y(-x); y(-x)≠-y(x), то функция не является ни четной ни нечетной. 4) найдем нули функции: у=0; x^4/(4-2x)=0; x^4=0; x=0 график пересекает оси координат в точке (0; 0) 5) найдем промежутки возрастания и убывания функции, а так же точки экстремума: y'(x)=(4x³(4-2x)+2x^4)/(4-2x)²=(16x³-6x^4)/(4-2x)²; y'=0 (16x³-6x^4)/(4-2x)²=0 16x³-6x^4=0 x³(16-6x)=0 x1=0 x2=8/3 так как на промежутках (-∞; 0) (8/3; ∞) y'(x)< 0, то на этих промежутках функция убывает так как на промежутках (0; 2) и (2; 8/3) y(x)> 0, то на этих промежутках функция возрастает. в точке х=0 функция имеет минимум у (0)=0 в точке х=8/3 функция имеет максимум у (8/3)=-1024/27≈-37.9 6) найдем точки перегиба и промежутки выпуклости: y'=((16-24x³)(4-2x)²+4(4-2x)(16x-6x^4))/(4-2x)^4=(24x^4-96x³+32x+64)/(4-2x)³; y"=0 (24x^4-96x³+32x+64)/(4-2x)³=0 уравнение не имеет корней. следовательно: так как на промежутке (-∞; 2) y"> 0, тона этом промежутке график функции направлен выпуклостью вниз. так как на промежутке (2; ☆) y"< 0, то на этом промежутке график функции напрвлен выпуклостью вверх. 7) найдем асимптоты : а) вертикальные, для этого найдем доносторонние пределы в точке разрыва: lim (при х-> 2-0) (x^4/(4-2x)=+∞ lim (при х-> 2+0) (x^4/(4-2x)=-∞ так как односторонние пределы бесконечны, то в этой точке функция имеет разрыв второго рода и прямая х=2 является вертикальной асимптотой. б) наклонные y=kx+b k=lim (при х-> ∞)(y(x)/x)= lim (при х-> ∞)(x^4/(x(4-2x))=∞ наклонных асимптот функция не имеет. 8) все, строй график
1) 10:5=2(см) составляет 1/5
2)8:2=4(ч.)- частей на 8 дм.
ответ: 4 части