М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Мaрсс
Мaрсс
22.03.2021 18:06 •  Математика

Постройте график прямой пропорциональности проходящий через точку А(2;-3).
По графику запишите формулу прямой пропорциональности

👇
Ответ:
tinafortinova78
tinafortinova78
22.03.2021

У=-5 х=5

Пошаговое объяснение:

4,5(12 оценок)
Открыть все ответы
Ответ:
lipaalexandrova
lipaalexandrova
22.03.2021

Пусть a, b, c - первые три члена арифметической прогрессии, тогда по условию:

а + b + с = 15   [1]

По свойству арифметической прогрессии:

b - а = с - b

2b = а + с   подставим в уравнение [1], получим:

2b + b = 15

3b = 15

b = 5 - второй член арифметической прогрессии.

Тогда сумма первого и третьего членов:

а + с = 15 - 5

а + с = 10   ⇒   c = 10 - a

Переходим к геометрической прогрессии. По условию:

первый член = а + 1

второй член = b + 3 = 5 + 3 = 8

третий член = с + 9 = 10 - a + 9 = 19 - a

По свойству геометрической прогрессии:

\displaystyle\tt \frac{8}{a+1}= \frac{19-a}{8}; \ \ \ \ a\neq-1\\\\\\ 8\cdot8=(a+1)(19-a)\\\\64=19a-a^2+19-a\\\\a^2-18a+45=0\\\\D=324-180=144=12^2\\\\a_1=\frac{18-12}{2}=3

\displaystyle\tt a_2=\frac{18+12}{2}=15   не удовл.условию, так как искомая геометрическая прогрессия возрастающая.

Получили а = 3, тогда с = 10 - а = 10 - 3 = 7

Итак, первые три члена арифметической прогрессии: 3; 5; 7.

Найдем три первых члена геометрической прогрессии:

первый член = а + 1 = 3 + 1 = 4

второй член = 8

третий член = с + 9 = 7 + 9 = 16

Искомая геометрическая прогрессия: 4; 8; 16; ...

Найдем сумму 7 первых членов.

b₁ = 4  - первый член

q = b₂/b₁ = 8/4 = 2 - знаменатель прогрессии

Искомая сумма:

\tt S_7=\cfrac{b_1(q^n-1)}{q-1}= \cfrac{4(2^7-1)}{2-1}=4\cdot127=508

ответ: 508

4,5(90 оценок)
Ответ:
Selch
Selch
22.03.2021
Для определённости пронумеруем виды трёхслойного куба (далее куб) по порядку по строкам. Так, например, третий – это полностью симметричный.

Далее, для описания манипуляций с видами будем использовать термины:

RT (правый единичный поворот на 90 градусов по часовой стрелке) ,
LT (левый единичный поворот на 90 градусов против часовой стрелки) ,
UT (разворот на 180 градусов)

Наша начальная цель: собрать из пяти видов верхнюю часть куба, т.е. его грани, стоящие над столом. Будем считать, что мы смотрим на стол с кубом сверху. Верхнюю часть куба, состоящую из пяти видов, будем собирать в виде крестовой раскладки.

В центре креста раскладки будет верхняя грань, которая смотрит на нас, когда мы смотрим вниз на стол с кубом. Дальняя от нас (сверху экрана, если смотреть на ноутбук) часть креста раскладки: это задняя сторона куба. Ближняя к нам (снизу экрана, если смотреть на ноутбук) часть креста раскладки: это передняя сторона куба. Левая часть креста раскладки – это левая сторона куба и правая часть раскладки – соответственно правая сторона.

Важно понимать, что на стыках видов (на рёбрах) при составлении раскладки должны совпадать цветные квадратики на краях видов: чёрный к чёрному и белый к белому, поскольку рёбра куба одновременно являются и рёбрами маленьких кубиков, каждый из которых обладает однотонным окрасом со всех сторон.

Перебор возможных вариантов удобно делать на черновике с карандашом и бумагой, либо с ручкой, но тогда нужно зачёркивать неудачные варианты.

Перебор должен быть системным, иначе мы пропустим тот или иной вариант, и можем пропустить и нужный нам вариант. В качестве системы можно предложить, например, такой график просмотра вариантов.

1. Выбираем вид для верхней грани куба, т.е. для центра креста раскладки (сначала первый, потом второй и т.д.)

2. Когда выбран какой-то вид для верхней (центральной) грани, пытаемся подмонтировать в качестве задней грани к нему другие виды. Опять же по порядку видов.

3. Когда выбран какой-то вид для верхней (центральной) и задней граней, пытаемся подмонтировать в качестве правой грани к нему другие виды. Опять же по порядку видов.

4. Когда выбран какой-то вид для верхней (центральной), задней и правой граней, пытаемся подмонтировать в качестве передней грани к нему другие виды. Опять же по порядку видов.

5. Когда выбран какой-то вид для верхней (центральной), задней, правой и передней граней, пытаемся подмонтировать в качестве левой грани к нему оставшийся вид.

При этом нужно следить, чтобы совпадали рёбра не только верхней (центральной) грани с боковыми, но и рёбра между боковыми гранями.

Перед перебором нужно отметить, что грани 3-его и 5-ого видов – несовместимы. Как их не крути, их рёбра никогда не совместятся. Значит, ни один из этих видов не может служить верхней гранью куба, поскольку иначе он бы взаимодействовал по ребру с несовместным видом. Кроме того, эти несовместные виды не могут быть рядом и на соседних боковых гранях. Таким образом, мы понимаем, что при переборе 3-ий и 5-ый виды можно размещать только на противоположных гранях.

Последовательный перебор из, примерно десятка неудачных – приводит к единственному хорошему варианту:

В центре креста раскладки: 2-ой вид.
Слева: 3-ий вид.
Справа: 5ый вид RT.
Сзади: 1-ый вид.
Впереди: 4-ый вид UT.

Эта раскладка показана на первом рисунке. Обратите внимание, что по раскраске совмещены не только рёбра на стыке видов центральных и боковых граней, но и рёбра на стыке соседних боковых граней.

Теперь очень аккуратно в строгом соответствии с буквами-метками (они должны совместиться) переворачиваем раскладку, так чтобы получилась нижняя грань. Это показано на втором рисунке и там уже проявляется по совмещениям на рёбрах вид нижней грани.

Если взглянуть на предлагаемые варианты, то мы можем легко убедиться, что подходит и вариант (А) и вариант (Д) при повороте их на LT.

Выбрать нужный вариант – можно только сосчитав количество белых (их должно быть 12) и чёрных кубиков (их должно быть 15).

Смотрим на первую раскладку. На верхней грани – 3 белых. В среднем видимом слое, в том, что зажат между верхней и нижней гранью (состоящем из 8 кубиков) – 4 белых. В нижней грани (что можно увидеть на второй картинке) – как минимум 3 кубика.

Всего в видимой и известной части кубика мы насчитали 10 белых кубиков. А должно их быть 12. Значит, один белый кубик находится в центре куба (он невидим) и ещё один белый кубик мы можем разместить в положение, отмеченное на втором рисунке знаком вопроса.

А значит, окончательно, нам подходит вариант (Д)

О т в е т : (Д) .

Вквадрате 3х3 некоторые клетки белые, а остальные черные. известно что не во всех столбцах не все к
Вквадрате 3х3 некоторые клетки белые, а остальные черные. известно что не во всех столбцах не все к
4,8(39 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ