По определению, вероятность того, что из двух выбранных шаров один будет черным, а другой красным, равна отношению числа благоприятных вариантов к общему числу вариантов. Число вариантов, которыми можно выбрать 1 черный шар из 6, равно 6. Число вариантов, которыми можно выбрать 1 красный шар из 4, равно 4. Число вариантов, которыми можно выбрать 2 шара из 6+4=10 равно числу сочетаний из 10 по 2: C(k;n)=n!/(k!(n-k)!) - число сочетаний из n=10 по k=2. С(2;10) = 10!/(2!(10-2)!) = 10!/(2!8!) = 45 Вероятность того, что из двух случайно выбранных шаров один шар черный, а второй красный: Р=6*4/45 = 0,533.
:
Предположим, что х - это количество грузовых автомобилей, а (750-х) - это количество легковых автомобилей,
у грузовых автомобилей 6 колёс, а у легковых автомобилей - 4, также из условия задачи известно, что всего 3 024 колеса
тогда согласно этим данным можно составить уравнение:
6х+4(750-х)=3 024
6х+3 000-4х=3 024
2х+3 000=3 024
2х=3 024-3 000
2х=24
х=24:2
х=12 (м.) - грузовые автомобили.
750-х=750-12=738 (м.) - легковые автомобили.
:
1) 750·4=3 000 (к.) - было бы колёс, если бы все автомобили были легковыми.
2) 3 024-3 000=24 (к.) - лишнее количество колёс (сколько колёс имеется потому, что среди автомобилей есть грузовые).
3) 6-4=2 (части) - разница в количестве колёс (у грузовых автомобилей на 2 колеса больше, чем у легковых)
4) 24:2=12 (м.) - грузовые автомобили.
5) 750-12 =738 (м.) - легковые автомобили.
ответ: в гараже стоят 12 грузовых автомобилей и 738 легковых автомобилей.
Проверка:
12+738=750 (шт.) – автомобилей всего.
12·6=72 (колёса у грузовых автомобилей)
738·4=2 952 (колёса у легковых автомобилей)
72+2 952=3 024 (колеса всего)
Пошаговое объяснение: