ответ: 8 пар.
Объяснение:
Раскрыв скобки, получаем:
Перенесем слагаемые с переменными влево, а свободный член — вправо:
Из обеих частей уравнения вычтем :
Разложим левую часть на множители методом группировки:
К обеим частям уравнения прибавим выражение :
Вынесем общий множитель за скобки:
Вынесем :
Так значения m и n целые (по нужному условию), значения выражений в скобках не могут быть дробными.
Произведение двух целых чисел равно в восьми случаях:
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) .
Определим, какие будут значения m и n, если значения выражений в скобках равны множителям из каждого случая:
1)
Получаем:
Значит, (m,n) = (0; -13).
Аналогично рассмотрим следующие случаи:
2)
(m,n) = (-2; 5).
3)
(m,n) = (-11; -13).
4)
(m,n) = (9; 5).
5)
(m,n) = (-3; -1).
6)
(m,n) = (1; -7).
7)
(m,n) = (4; -1).
8)
(m,n) = (-6; -7).
Выходит, 8 пар целых чисел (m, n) удовлетворяют данное равенство.
ответ:ответ. 102. Решение. Проведем отрезки BD и CE. Пусть они пересекаются в точке О. Заметим, что треугольники BCD и CDE равнобедренные с углом 108 при вершине, а значит, углы при основании равны 36 (они отмечены на рисунке одной дугой). Тогда BCE = BDE = 72. Угол COD равен 108 (т.к. в треугольнике COD два угла по 36). Поэтому COB = 180108 = 72. Углы по 72 отмечены на рисунке двумя дугами. Получаем, что треугольники CBO и DEO равнобедренные. Значит, AB = BO =BC = CD = DE = EO = х. Заметим, что OBA = 9636 = 60. Значит, треугольник OBA равнобедренный с углом 60 при вершине, т.е. равносторонний. Поэтому AO = x. Вычислим угол AOE AOE = EOBAOB = 10860 = 48. Треугольник AOE равнобедренный с углом 48 при вершине. Поэтому OEA = (18048)/2 = 66. Получаем, что угол E пятиугольника равен AED = AEO+OED = 66+36 = 10
Пошаговое объяснение: