М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mauntians
Mauntians
13.02.2020 01:19 •  Математика

напишити что написать в этот квадратик только правильно

👇
Ответ:
fariii046
fariii046
13.02.2020

Пошаговое объяснение:

1\3х=6

4,5(52 оценок)
Ответ:
mon13
mon13
13.02.2020

6 ,просто нужно было 4 +2=6,а 4-4=0

Пошаговое объяснение:

1/3х=6

4,6(13 оценок)
Открыть все ответы
Ответ:
sashashola
sashashola
13.02.2020
Сначала выполним чертёж. Это позволит найти точки пересечения графиков. Точки пересечения линий согласно чертежа (см. вложение) х₁=-1  х₂=2. Можно найти точки пересечения и аналитически, решив уравнение:
х²=х+2
х²-х-2=0
D=(-1)²-4*(-2)=9=3²
x₁=(1-3)/2=-1    x₂=(1+3)/2=2
Значит нижний предел интегрирования a=-1, верхний предел интегрирования b=2.
Площадь фигуры, ограниченная графиками функций, находится по формуле
S=∫(f(x)-g(x))dx
В нашем примере на отрезке [-1;2] прямая расположена выше параболы, поэтому из х+2 необходимо вычесть х²
S= \int\limits^2_{-1} {(x+2-x^2)} \, dx= \frac{x^2}{2}+2x- \frac{x^3}{3} |_{-1}^2=
= \frac{4}{2}+4- \frac{8}{3}-( \frac{1}{2}-2+ \frac{1}{3})=6- \frac{8}{3}+ \frac{3}{2}- \frac{1}{3}=4,5
ответ: 4,5 ед²
Вычислить площади ограниченные линиями y=x^2 y=x+2
4,8(34 оценок)
Ответ:
Настюля151
Настюля151
13.02.2020
Сначала выполним чертёж. Это позволит найти точки пересечения графиков. Точки пересечения линий согласно чертежа (см. вложение) х₁=-1  х₂=2. Можно найти точки пересечения и аналитически, решив уравнение:
х²=х+2
х²-х-2=0
D=(-1)²-4*(-2)=9=3²
x₁=(1-3)/2=-1    x₂=(1+3)/2=2
Значит нижний предел интегрирования a=-1, верхний предел интегрирования b=2.
Площадь фигуры, ограниченная графиками функций, находится по формуле
S=∫(f(x)-g(x))dx
В нашем примере на отрезке [-1;2] прямая расположена выше параболы, поэтому из х+2 необходимо вычесть х²
S= \int\limits^2_{-1} {(x+2-x^2)} \, dx= \frac{x^2}{2}+2x- \frac{x^3}{3} |_{-1}^2=
= \frac{4}{2}+4- \frac{8}{3}-( \frac{1}{2}-2+ \frac{1}{3})=6- \frac{8}{3}+ \frac{3}{2}- \frac{1}{3}=4,5
ответ: 4,5 ед²
Вычислить площади ограниченные линиями y=x^2 y=x+2
4,7(38 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ