Нехай сторони прямокутника дорівнюють х см і у см. Знаючи, що діагональ дорівнює 13 см і використовуючи теорему Піфагора, складаємо перше рівняння: х² + у² = 169 Знаючи, що площа прямокутника дорівнює 60 см², складаємо друге рівняння: ху=60 Отримали систему рівнянь: {х² + у² = 169, {ху=60
Виражаємо з другого рівняння х через у (х=60/у) і підставляємо це значення у перше рівняння: (60/у)² + у² = 169 3600/у² + у² = 169
Множимо обидві частини рівняння на у², щоб позбутися знаменника (у≠0): 3600 + у⁴ = 169у² у⁴ - 169у² + 3600 = 0
Отримали біквадратне рівняння. Вводимо заміну: у² = t
1) x-4 1/2= -2 1/4
x= -2 1/4+4 1/2 =-9/4+9/2=(-9+19)/4=9/4
x=9/4
2) -x-6 4/5=3 1/2
-x=3 1/2+6 4/5 = 7/2+34/5=(35+68)/10=103/10=10 3/10
-x=10 3/10
x= -10 3/10
3) -x-11 1/2= -4 7/8
-x= -4 7/8+11 1/2 = -39/8+23/2=(-39+92)/8=53/8=6 5/8
-x=6 5/8
x= -6 5/8