ответ: 60
Пошаговое объяснение:
Варианты задуманного двузначного числа: 15, 30, 45, 60, 75, 90.
Сначала проверяем нечетные числа:
Добавляем последнюю цифру данного числа - 15 -> 155
По теории деления на 3, 6, 9, сложим все цифры числа 155, чтобы узнать, делится ли сумма на 3.
155:
1 + 5 + 5 = 11, число 11 не делится на 3, а значит не делится на 9.
Можно пропустить нечетные числа.
Рассмотрим четные числа:
Аналогично осмотру нечетных чисел, т.е. так же проверяем четные.
300:
3 + 0 + 0 = 3, число 3 делится на 3, но не одновременно на 9.
300/9 = 33 3/9 (3 - остаток, как мы знаем, а 9 - число, на которое мы делим)
Нам по заданий нужно найти число, которое даёт остаток 6 при делении на 9.
600:
6 + 0 + 0 = 6, число 6 делится на 3, но опять же вместе с этим не делится на 9.
600/9 = 66 6/9 (6 - остаток, 9 - делитель)
900:
9 + 0 + 0 = 9, число делится на 3, и теперь уже заодно на 9.
Мы нашли нужное для ответа задуманное двузначное число по условиям задачи: 60.
А
sin (2x)=0
2x=пи*к
х=пи*к/2
Б
cos(x)cos(2x)-sin(x)sin(2x)=0
cos(x)cos(2x)=sin(x)sin(2x)
существуют формулы
cosAcosB=1/2(cos(A-B)+cos(A+B))
по ней
cos(x)cos(2x)=1/2(cos(x-2x)+COS(X+2X)
cos(x)cos(2x)=1/2(COS(-X)+COS(3X))
cos(x)cos(2x)=1/2(COS(X)+COS(3X)) минус в косинусе исчезает
далее по формуле
sinAsinB=1/2(cos(A-B)-cos(A+B)
по ней
sin(x)sin(2x)=1/2(cos(x)-cos(3x))
получаем
1/2(COS(X)+COS(3X))=1/2(cos(x)-cos(3x)) делим на 1/2
(COS(X)+COS(3X)=(cos(x)-cos(3x))
теперь по формулам сумма и разность косинусов
2cos(2x)cos(x)=-2sin(2x)sin(-x) и выносим минус
2cos(2x)cos(x)=2sin(2x)sin(x) делим на 2
cos(2x)cos(x)=sin(2x)sin(x)
cos(2x)cos(x)-sin(2x)sin(x)=0
cos(2x)cos(x)-2sin(x)cos(x)sin(x) раскрыли синус по формуле двойного угла и вынесем общий косинус
cos(x)(cos(2x)-2sin(x)sin(x))=0
cos(x)=0
х=пи/2 +пи*к
И
cos(2x)-2sin(x)sin(x)=0 раскроем косинус по формуле двойного угла
(1-2sin^2(x))-2sin^2(x)=0
1-4sin^2(x)=0
-4sin^2(x)=-1
sin^2(x)=1/4
sin(x)=1/2 И sin(x)=-1/2
x=пи/6+2пи*к
х=5пи/6+2пи*к
х=7пи/6+2пи*к
х=11пи/6+2пи*к
x=пи/6+2пи*к
х=5пи/6+2пи*к
х=7пи/6+2пи*к
х=11пи/6+2пи*к
х=пи/2 +пи*к