Пошаговое объяснение:
1) y = g(x):
Область определения: [-2; 6]
Область значения: [-3; 2]
Нули при x ∈ {2, 6}
На [-2; 0) ∪ (4; 6] монотонно убывает.
На (0; 4) монотонно возрастает.
На [-2; 2) отрицательна.
На (2; 6) положительна.
В (0; -3) absmin.
В (4; 2) absmax.
2) y = f(x):
Область определения: [-5; 4]
Область значения: [-2; 4]
Нули при x ∈ {-3.5, 1, 3}
На (-1; 2) монотонно убывает.
На [-5; -1) ∪ (2; 4] монотонно возрастает.
На [-5; -3.5) ∪ (1; 3) отрицательна.
На (-3.5; 1) ∪ (3; 4] положительна.
В (2; -1.5) locmin.
В (-1; 4) absmax.
Подставим это в уравнение
cos^2x+sin^2x=1
Зная это тождество, распишем 2 как 1+1 и 1 заменим на левую часть равенства. Получится следующее:
cos^2x-sin^2x-3cosx+cos^2x+sin^2x+1=0
Приведём подобные:
2cos^2x-3cosx+1=0
Теперь у нас получилось обычное квадратное уравнение, корнем которого является cosx. Но для удобства обозначим cosx как y. У нас получится:
2y^2-3y+1=0
D=9-4*2*1=1
y1=(3-1)/4=1/2
y2=(3+1)/4=1
Теперь найдём х:
y1=cosx1
cosx1=1/2
x1=±arccos 1/2 +2Pi*n, n принадлежит Z
x1=±Pi/3+2Pi*n, n принадлежит Z
cosx2=y2
cosx2=1
x2=±arccos1+2Pi*n, n принадлежит Z
x2=2Pi*n, n принадлежит Z