Площадь поверхности правильной треугольной пирамиды определим как сумму площадей основания и боковой поверхности: S = Sосн + Sбок.
В основании лежит правильный треугольник, его площадь определим по формуле Sосн = a2√3 / 4, где а - сторона основания.
Площадь боковой поверхности определим как сумму площадей боковых граней. В правильной треугольной пирамиде боковые грани представляют собой равные равнобедренные треугольники, поэтому Sбок = 3 * 0,5 * а * h, где а - сторона основания, h - апофема.
Апофему найдем как гипотенузу прямоугольного треугольника, в котором катеты - высота пирамиды и радиус окружности, вписанной в основание: h = √ (r2 + H2).
Радиус окружности, вписанной в основание, определяем по формуле: r = a / 2√3.
Общее число кубиков по формуле объема N = 4*5*6 = 120 штук - всего. По три грани окрашено - в вершинах N3= 8 шт По две грани окрашено - на четырёх ребрах без вершин - уменьшаем длину ребра на 2 см каждое. N2= 4*(2+3+4)= 4*9 = 36 штук По одной грани - по 2 грани на 2 см меньше N1 = 2*(2*3+2*4 + 3*4) = 2*(6+8+12) = 52 кубика Совсем не окрашено - внутри кубика - все размеры уменьшаем на 2 см. N0 = 2*3*4 = 24 шт. Проверка: ВСЕГО =8 (по три) + 36 (по две) +52 (по одной) + 24 (не окр.) = 120 шт. ответ: (текст по проверке)
Из жизни дробей. Вы никогда не задумывались, что делают цифры, когда вы закрываете тетрадку? Между прочим, они и без вас неплохо живут! Ходят в гости, складываются и вычитаются, делятся, умножаются… И не всегда на место возвращаются! Ведь не вы же все эти глупые ошибки делаете? Вот однажды две Дроби поссорились. Это не секрет, что у Дробей ужасно скверный характер. То они сокращаться не хотят, то приводиться. Да вы и сами это знаете. На сей раз это были почтенные 17/18 и 18/19. Они выясняли, кто из них больше. (Вы то, конечно, сразу бы определили!) «Я больше!»,- кричит 18/19, -«У меня Числитель больше! Ведь всем известно, что чем больше Числитель, тем больше Дробь!». «Нет!»,- не уступает вторая,- «ты на свой Знаменатель посмотри! У меня Знаменатель меньше, значит, я - больше!». «Да приведитесь вы, наконец, к Общему Знаменателю! Тогда сразу понятно будет»,- советуют им. «Вот еще. Я не желаю иметь с ней ничего общего!»,- не соглашается одна. « Зачем мне эта морока, когда я чувствую, что Я больше», - возражает другая. Пришлось вызывать Уравнителя. А у того есть свой метод, и эталон припасен. Берет ЕДИНИЦУ и отнимает от нее спорщиц. «Так, гражданочки: 1 - (17/18) = 1/18; 1 - (18/19) = 1/19. Выходит-то, что 1/19 МЕНЬШЕ, чем 1/18. Значит, и 18/19 будет немного БЛИЖЕ к ЕДИНИЦЕ, чем 17/18.». А к Уравнителю уж очередь выстроилась ему Решите, кто больше: 92/93 или 93/94? А то ему еще нужно поскорее Обыкновенные Дроби 4/5 и 3/8 в Десятичные перевести, иначе они на самолет опоздают!
Площадь поверхности правильной треугольной пирамиды определим как сумму площадей основания и боковой поверхности: S = Sосн + Sбок.
В основании лежит правильный треугольник, его площадь определим по формуле Sосн = a2√3 / 4, где а - сторона основания.
Площадь боковой поверхности определим как сумму площадей боковых граней. В правильной треугольной пирамиде боковые грани представляют собой равные равнобедренные треугольники, поэтому Sбок = 3 * 0,5 * а * h, где а - сторона основания, h - апофема.
Апофему найдем как гипотенузу прямоугольного треугольника, в котором катеты - высота пирамиды и радиус окружности, вписанной в основание: h = √ (r2 + H2).
Радиус окружности, вписанной в основание, определяем по формуле: r = a / 2√3.
r = a / 2√3 = 4 / 2√3 = 2 / √3;
h = √ (r2 + H2) = √ (4 / 3 + 36) = √ (112 / 3) = 4√7 / √3;
Sбок = 3 * 0,5 * а * h = 3 * 4 * 4√7 / 2√3 = 24√7 / √3;
Sосн = a2√3 / 4 = 16√3 / 4 = 4√3;
S = Sосн + Sбок = 4√3 + 24√7 / √3 ≈ 43,59 см2.
_(как то так)(я не очень уверена)_