Решим задачу в общем случае. Обозначим число сторон в основании призмы за n. Тогда призма имеет n граней и 2n вершин. Вероятность рассчитывается как отношение числа благоприятных исходов к общему числу исходов. Найдем общее число исходов: выбрать 3 вершины из 2n имеющихся можно Найдем число благоприятных исходов как разность общего числа исходов и числа неблагоприятных исходов. Общее число исходов известно, теперь находим число неблагоприятных исходов. Если все выбранные вершины лежат на боковой грани или на основании, то образовавшееся сечение не будет содержать точек строго внутри призмы. Число выбрать три вершины боковой грани равно , так как призма имеет n боковых граней, и в каждой грани расположено 4 вершины. Число выбрать три вершины основания равно , так как призма имеет всего два основания и в каждом из этих оснований расположено n вершин. Получаем общее число неблагоприятных исходов: . Тогда число благоприятных исходов равно . Находим искомую вероятность:
Для семиугольной призмы, то есть для n=7, получаем:
5) если один множитель увеличить в k раз, а другой — уменьшить в m раз (k> m), то произведение увеличится в k: m раз: (a х k) х (b: m) = c х (k: m) пример: 8 х 6 = 48 первый множитель 8 увеличим в 14 раз, а второй множитель 6 — уменьшим в 2 раза: 112 х 3 = 336 произведение 336 по сравнению с первоначальным 48 увеличилось в 7 раз, 7=14: 2. тот же результат получим, если первый множитель 8 уменьшим в 2 раза, а второй — 6 — увеличим в 14 раз: 4 х 84 = 336 ну думаю этого вполне хватит для оценки 5+
что надо делать?