М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Zheka1163
Zheka1163
08.08.2021 20:47 •  Математика

На доске было написано 30 натуральных чисел (необязательно различных), каждое из которых не
превосходит 40. Среднее арифметическое написанных чисел равнялось 1. Вместо каждого из чисел
на доске написали число, в два раза меньшее первоначального. Числа, которые после этого
оказались меньше 1, с доски стёрли.
а) Могло ли оказаться так, что среднее арифметическое чисел, оставшихся на доске, больше 14?
ответ: Ода Онет
6) могло ли среднее арифметическое оставшихся на доске чисел оказаться больше 12, но меньше 13?
ответ: Ода Онет
в) Найди наибольшее возможное значение среднего арифметического чисел, которые остались на
доске​

👇
Открыть все ответы
Ответ:
blackfox30
blackfox30
08.08.2021
Уравнения с четырьмя и более неизвестными. Теперь ясны следующие соображения: одно уравнение с четырьмя неизвестными имеет бесконечно много решений, причем можно давать произвольные значения трем неизвестным, два уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать двум неизвестным, три уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать одному неизвестному, четыре уравнения с 4 неизвестными имеют лишь одно решение (конечно, если ни одно из этих уравнений не есть следствие остальных и не противоречит остальным).

Такие соображения можно продолжить и дальше. Например, 5 уравнений с 8-ю неизвестными имеют бесконечно много решений, причем произвольные значения можно давать трем неизвестным и т. п.

Решать системы уравнений с большим числом неизвестных приходится редко. Следует при этом решении пользоваться по возможности всеми особенностями уравнений, чтобы упростить решение.

Рассмотрим 2 примера. Пример 1:

x + y + 2z – t = 9
x + y – 2z + t = 7
x – y + z + 2t = –9
x – y – z – 2t = 5

Сложив 1-е и 2-е уравнения по частям, мы получим очень простое уравнение только с двумя неизвестными, а именно

2x + 2y = 16 или x + y = 8.

Сложив по частям 3-е и 4-е уравнения, получим:

2x – 2y = –4 или x – y = –2.

Теперь легко решить 2 полученных уравнения (x + y = 8 и x – y = –2), и тогда найдем x = 3 и y = 5.

Подставляя эти значения в 1-е и в 3-е уравнения, получим:

3 + 5 + 2z – t = 9 или 2z – t = 1
3 – 5 + z + 2t = –9 или z + 2t = –7

Подстановка этих значений во 2-е и 4-е уравнения приведет к таким же точно уравнениям.

Теперь остается решить 2 уравнения с 2 неизвестными:
4,5(81 оценок)
Ответ:
мария2081
мария2081
08.08.2021
Чтобы понять задачу, начнём пробовать с 1 буквы, с двух букв и т.д.
Пусть алфавит состоит из одной буквы А. Наибольшая длина требуемой последовательности равна 1, т.е. состоит из 1 буквы А.
Пусть алфавит состоит из двух букв А и Б. Тогда требуемая последовательность будет состоять из трёх букв: АБА.
Пусть алфавит состоит из трёх букв А, Б и В. Тогда требуемая последовательность будет такая АБАВАБА (7 букв). Т.е. одна буква в середине, а по краям повторяются последовательности, которые были рассмотрены на шаг ранее. И теперь, какую бы последовательность мы не возьмём, одна из букв будет встречаться только один раз.
Вырисовывается некая закономерность, поэтому легко составляется последлвательность для алфавита из 4-х букв А, Б, В и Г:
АБАВАБАГАБАВАБА (15 букв).
Можно таким образом продолжить и далее до алфавита из 7 букв, но заметим, что в последовательности, состоящей из длин требуемой строки, есть закономерность:
1, 3, 7, 15, ... - это не что иное, как 2^n -1, где n - количество букв в алфавите. Значит, для n=7 получим:
2^7-1 = 127
Покажем, что это распространяется для любого n методом математической индукции. Первые шаги нами уже проверены, поэтому предполагаем, что формула верна для некоего числа n. Докажем, что это выполянется и при (n+1).
Что мы делали, когда составляли последовательность, добавляя в алфавит ещё одну букву? Мы брали две предыдущие последовательности и в середину вставляли новую букву.
(2^n-1) + 1 + (2^n-1) =2*(2^n-1) +1 =2*2^n -2 +1 =2^{n+1} -1
Что и требовалось доказать.

ответ: 127
4,8(91 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ