Сначала нужно узнать количество существующих монет у мальчика.
монеты регулярной чеканки в 1, 5, 10, 50 копеек, 1, 2, 5 и 10 рублей — 9; памятные монеты из недрагоценных металлов в 25 рублей — 1.
Если учитывать, что ситуация обычная, то типов монет - 9. Значит, имеем, что любые 3 из них точно имеют общую стоимость.
Остаются только 3 монеты (27 уже определены как ряд из 1, 5, 10, 50, 1, 2, 5, 10 - 9 чисел * 3), которые могут дать нам 4 монеты одинакового типа (представим, что у мальчика монеты идут по порядку - в каждом ряду точно есть 1 опр. типа). В 4 ряду может быть иное представление, однако суть не изменится: будет все такое же количество типов в 4 шт.
Поэтому утверждать, что у мальчика есть 4 или 3 монеты одинакового типа, можно, в случае возрастания монет по порядку в каждом ряду.
Пошаговое объяснение:
а) x^2-2x=8; x^2-2x+1-1-8=0; x^2-2x+1-9=0; (x-1)^2-3^2=0;
(x-1+3)(x-1-3)=0; (x+2)(x-4)=0; x1=-2 x2=4.
b) x^2- 4x= 21; x^2-4x+4-4-21=0; x^2-4x+4-25=0; (x-2)^2-5^2=0;
(x-2+5)(x-2-5)=0 (x+3)(x-7)=0; x1=-3 x2=7;
c) x^2+ 6x= 16; х^2+6x+9-9-16=0; х^2+6x+9-25=0; (x+3)^2-5^2=0;
(x+3+5)(x+3-5)=0; (x+8)(X-2)=0; x1=-8 x2=2.
d) x^2+ 2x- 3= 0; x^2+ 2x+1-1- 3= 0; x^2+ 2x+1-4= 0;
(x+1)^2-2^2= 0; (x+1+2)(x+1-2)=0; (x+3)(x-1)=0; x1=-3 x2=1.
e) x^2+6x- 7= 0; x^2+6x+9-9-7= 0; (x+3)^2-16= 0; (x+3+4)(x+3-4)=0;
(x+7)(x-1)=0; x1=-7 x2=1.
f) x^2+3x- 10= 0; x^2+3x+2,25-2,25-10= 0; (x-1,5)^2-12,25=0;
(x-1,5+3,5)(x-1,5-3,5)=0; (x+2)(x-5)=0; x1=-2 x2=5.
h) x^2- 20x+ 36= 0; x^2- 20x+100-100+ 36= 0; (x-10)^2-64=0;
(x-10)^2-8^2=0; (x-10+8)(x-10-8)=0; (x-2)(x-18)=0; x1=2 x2=18.
i) x^2- 3x= 4; x^2-3x+2,25-2,25-4=0; (x-1,5)^2-6,25=0;
(x-1,5)^2-2,5^2=0; (x-1,5+2,5)(x-1,5-2,5)=0; (x+1)(x-4); x1=-1 x2=4.
j) x^2- x=12; x^2-x+0,25-0,25-12=0; (x-0,5)^2-12,25=0;
(x-0,5)^2-3,5^2=0; (x-0,5+3,5)(x-0,5-3,5)=0; (x+3)(x-4)=0; x1=-3 x2=4.
Надо сказать, что не всякое уравнение можно решить таким Это один из многочисленных методов решения.