Представим сечение конуса с шаром плоскостью перпендикулярной основанию и проходящей через высоту конуса. Сечение будет выглядеть как равнобедренный треугольник с вписанной окружностью, где бедра треугольника являются образующими, а центр коружности лежит в пересечении серединных перпендикуляров, один из которых является высотой конуса. Рассмотрим один треугольник образзованный высотой конуса и образующей ( бедром треугольника). По условию высота = 15, а образующая 25. Отсюда по теореме Пифагора основание такого треугольника = √(25²-15²)=20. А основание всего треугольника образованного сечением = 20*2=40. Используем формулу для радиуса вписанной в треугольник окружности r= ) где p полупериметр = (25+25+40):2=45 , а в и с стороны треугольника. подставляя значения в ф-лу получаем что радиус равен 6.(6)
А) например, подойдет 8, уравнение 3t^2 - 8t + 4 = 0 Вообще, если неизвестный коэффициент обозначить за u, то подойдет любое u, для которого дискриминант u^2 - 4 * 3 * 4 = u^2 - 48 > 0
в) Нужно написать многочлен, корни которого t = -t1 и t = -t2. Это может быть, например, многочлен (t + t1)(t + t2) = (t + 2/3)(t + 2) Самый простой построить такой многочлен, не вычисляя корней, – воспользоваться теоремой Виета и её обратной. Для противоположных корней сумма меняет знак, а произведение остается прежним, так что 3t^2 + 8t + 4 подходит.
2) 630:70=9 следовательно 630 :(150-141)=70
3) 10 000:400=25 следовательно
400• (30-5)= 10 000