0
Если из каждого числа вычесть 2, перейдя к новым переменным, то получится уравнение вида y1+y2+y3+y4=29y1+y2+y3+y4=29, которое нужно решить в целых неотрицательных числах (здесь yi=xi−2≥0yi=xi−2≥0). Это стандартная комбинаторная задача, ответом к которой является число сочетаний с повторениями из 44 по 2929. Оно равно обычному числу сочетаний из 4+29−1=324+29−1=32 по 2929, то есть C2932=C332=4960C3229=C323=4960.
ссылка
отвечен 11 Май '14 13:52

falcao
255k●2●36●50
а если знак просто больше. xi > 2
Пошаговое объяснение:
Если делитель уменьшить в 5 раз, то полученный делитель будет равен у/5. Следовательно, частное делимого х и полученного делителя у/5 составит: х / (у/5) =х * (5/у) = 5 * х/у.