М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

50.1. Найдите область определения функции y = f(x):
1) f(x) = x3 — 9x + 40;​

👇
Ответ:
Kazanji
Kazanji
24.09.2021
Область определения функции описывает все возможные значения аргумента x, при которых функция f(x) имеет смысл и может быть вычислена. Для того чтобы найти область определения функции y=f(x) = x^3 - 9x + 40, нужно рассмотреть все ограничения, которые могут быть на аргумент x.

Уравнение функции f(x) = x^3 - 9x + 40 не содержит никаких дробей, корней из отрицательных чисел или иных значений, которые могли бы ограничивать область определения. Таким образом, можно сказать, что область определения функции f(x) = x^3 - 9x + 40 является множеством всех действительных чисел, то есть (-∞, +∞).

Давайте рассмотрим подробнее, как я пришел к этому ответу.

Функция f(x) = x^3 - 9x + 40 представляет собой полином третьей степени. Полиномы такого вида определены для всех действительных значений аргумента x.

Мы можем утверждать, что x^3, -9x и 40 определены для любого x, так как возведение в степень, умножение на константу и сложение/вычитание действительных чисел не ограничивают область определения функции.

Таким образом, мы можем утверждать, что функция f(x) = x^3 - 9x + 40 определена для любого x, а значит ее область определения равна (-∞, +∞).

В конечном итоге, область определения функции y=f(x) = x^3 - 9x + 40 является множеством всех действительных чисел, что значит, что функция определена для любого значения аргумента x.
4,7(3 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ