Площади осевого сечения усеченного конуса равна 81 см^2. Найдите радиус большего основания усеченного конуса, если радиус меньшего равен 2.5 см , а длина образующей 9 см.
Бічна сторона рівнобічна трапеції 10√2 см. Вона утворює з основую куд 45 градусів. Знайти площу трапеції, якщо в неї можна вписати коло.
Пошаговое объяснение:
Прочитаем задачу:
Боковая сторона равнобедренной трапеции равна десять корней из двух , и образует с основанием угол 45 градусов.Найти площадь трапеции если в неё можно вписать окружность.
Опустим ВК⊥АD, ∠А=∠АВК=45°⇒ВК=АК
АВ²=2ВК²⇒ВК=√АВ²/2=10.
В четырехугольник можно вписать окружность тогда, когда суммы противоположных сторон четырехугольника равны.⇒
Треугольник ABCABC является остроугольным, так как 62<42+5262<42+52. Отсюда следует, что основания высот находятся на сторонах, а не на их продолжениях. Опустим высоту AA1AA1, и пусть она делит отрезок BCBC на части длиной xx и yy. С одной стороны, x+y=5x+y=5. С другой стороны, ввиду теоремы Пифагора, применённой к треугольникам ACA1ACA1 и ABA1ABA1 с общей высотой, 62−x2=AA21=42−y262−x2=AA12=42−y2. Следовательно, x2−y2=20x2−y2=20, то есть x−y=20/5=4x−y=20/5=4, откуда x=9/2x=9/2 и y=1/2y=1/2. Последнее означает, что K=A1K=A1, то есть треугольник ABKABK прямоугольный, и центр описанной около него окружности является серединой гипотенузы ABAB.Теперь опустим высоту BB1BB1, и тем же методом найдём CB1=15/4CB1=15/4, B1A=9/4B1A=9/4. Из этого следует, что MB1=15/4−27/8=3/8MB1=15/4−27/8=3/8, что составляет 1/101/10 от CB1CB1. Точно так же, KBKB составляет 1/101/10 от CBCB. Из этого можно сделать вывод, что прямые KMKM и BB1BB1 параллельны, а потому треугольник AKMAKM также прямоугольный. И центр описанной около него окружности есть середина гипотенузы AKAK.Таким образом, dd есть длина средней линии треугольника ABKABK, откуда d=BK/2=1/4d=BK/2=1/4.
Бічна сторона рівнобічна трапеції 10√2 см. Вона утворює з основую куд 45 градусів. Знайти площу трапеції, якщо в неї можна вписати коло.
Пошаговое объяснение:
Прочитаем задачу:
Боковая сторона равнобедренной трапеции равна десять корней из двух , и образует с основанием угол 45 градусов.Найти площадь трапеции если в неё можно вписать окружность.
Опустим ВК⊥АD, ∠А=∠АВК=45°⇒ВК=АК
АВ²=2ВК²⇒ВК=√АВ²/2=10.
В четырехугольник можно вписать окружность тогда, когда суммы противоположных сторон четырехугольника равны.⇒
АВ+CD=BC+AD=2*10√2=20√2
S=BK*(BC+AD)/2 =10*(20√2)/2=100√2.