М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Olenadob
Olenadob
16.08.2020 19:52 •  Математика

Игральный кубик прокатили по столу. На рисунке изображёи вооб-
ражаемый след кубика. Восстановите рисунок на гранях кубика,
используя след как подсказку. На каждой видимой грани напишите,
сколько на ней очков от 1 до 6.

👇
Ответ:
koookBook
koookBook
16.08.2020

5,3,1

Пошаговое объяснение:

на верхней грани будет единица, на правой-боковой- пятерка, на левой-боковой- тройка.

4,5(96 оценок)
Открыть все ответы
Ответ:
district31
district31
16.08.2020
Знайдіть усі значення параметра а при яких AX-3=√-x^2+18x-72 має єдиний розв'язок

Найдите все  значения параметра а при котором
ax-3 = \sqrt{-x^2+18x-72}
имеет единственное решение

Решение:
ОДЗ уравнения ax-3>0
Возведем обе части уравнения в квадрат
                     a²х² + 9 - 6ax = -x² + 18x - 72

(a² + 1)x² - (6a + 18)x + 81 = 0

D = (6a + 18)² - 4*81(a² + 1) = 36a² + 216a + 324 - 324a²- 324 = -288a² +216a = -a(288a-216)

Квадратичное  уравнение имеет единственное решение при условии что дискриминант равен 0

a(288a - 216) = 0

a₁ = 0 Не входит в ОДЗ так как при а=0 ax - 3 = -3<0                 

a₂ = -216/288 = 0,75 Входит в ОДЗ

ответ: 0,75

Рішення:
ОДЗ рівняння ax-3> 0
Зведемо обидві частини рівняння в квадрат
                      a²х² + 9 - 6ax = -x² + 18x - 72

(a² + 1) x² - (6a + 18) x + 81 = 0

D = (6a + 18) ² - 4 * 81 (a² + 1) = 36a² + 216a + 324 - 324a²- 324 = -288a² + 216a = -a (288a-216)

Квадратичне рівняння має єдине рішення за умови що дискримінант дорівнює 0

a(288a - 216) = 0

a₁ = 0 Чи не входить в ОДЗ так як при а = 0 ax - 3 = -3 <0

a₂ = -216/288 = 0,75 Входить в ОДЗ

Відповідь: 0,75

4,7(16 оценок)
Ответ:
Катя4567890123
Катя4567890123
16.08.2020

f(x)=1/3 x^3-x^4+5

f'(x)= x^2-4x^3

найдём стационарные точки:

х²-4х³ = 0

х²*(4х-1) = 0

x_0 = 0\\x_0 = \frac{1}{4}

Достаточное условие наличия экстремума в точке - производная меняет знак при переходе. Найдём значения производной на интервалах (возьмём значения: 1(0<0.25<1) , 1/5(0<1/5<1/4) и -1 (-1<0<1/4)

f'(1) = 1² - 4*(1³) = -3

f'( 1/5) = 0,2² - 4*(0,2³) = 0,04 - 4*(0,008) = 0,008 (Знак поменялся, точка 0,25 - точка минимума)

f'(-1) = (-1)²-4*(-1)³ = 1-4*(-1) = 1 + 4 = 5 знак остался прежним, поэтому точка экстремума Одна

ответ: х = 0,25 - точка экстремума

4,5(25 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ