Kx-4=x^2+3xkx-4-x^2-3x=0x^2+3x-kx+4=0x^2+(3-k)x+4=0нужна одна общая точка значит D=0D=(3-k)^2-4*4=(3-k)^2-4^2=(3-k-4)(3-k+4)=(-k-1)(-k+7)k=7 k=-1теперь подставляем. 7x-4=x^2+3x7x-4-x^2-3x=0x^2-4x+4=0D=0 x=2 7x-4=7*2-4=10 ответ (2.10)можно посторить график, а можно ситстемой решатьвот ситсемаy=kx-4y=x^2-3x значок системыkx-4=x^2-3xx^2-3x-kx+4=0 значок системыдорешиваем последнее уравнениеx^2-(3+k)x+4=0чтобы прямая и парабола имели одну общую точку, полученное уравнение (которое последнее во второй системе) должно иметть один корень, значи D=0D=(-(3+k))^2-4*4=(3+k)^2-4^2=(3+k-4)(3+k+4)=(k-1)(k+7)D=0, значит (k-1)(k+7)=0k^2+6k-7=0k1=7 k2=-1теперь подставляем k 1) 7x-4=x^2-3x x^2-10x+4=0 D1=25-4=21 x1,2=(5 + - корень из 21)2) -х-4=х^2-3х х^2-2x+4=0 D<0 корней нет
Вообще это ЛДУ 2-го порядка с переменными коэффициентами. Вводом переменной z=y' приходим к уравнению x*z'-z-x^2=0 = z'-z/x-x=0 - ЛДУ 1-го порядка. Пусть z=u*v ->u'*v+u*v' -u*v/x-x=0, v(u'-u/x)+u*v'-x=0, u'-u/x=0, du/u=dx/x, ln(u)=ln(x), u=x, x*v'=x, v'=1,v=x+C1, z=x*(x+C1)=x^2+C1*x. Проверка: x*z'-z-x^2=2*x^2+C1*x-x^2-C1*x-x^2=0, так что z найдено верно. Тогда y=x^3/3+C1*x^2/2. Проверка: y'=x^2+C1*x, y''=2*x+C1, x*y''-y'=2*x^2+C1*x-x^2-C1*x=x^2, так что у найдена верно. ответ: y=x^3+C1*x^2/2+C2
1) (1;-5)
2)(1.25;2)
Пошаговое объяснение:
1) х=1
у=-5
7*1-(-5) = 12
7+5=12
12=12
2) х=1,25
у=2
4*1,25+3*2=11
5+6=11
11=11