М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
brain67
brain67
15.06.2020 07:44 •  Математика

1
x - y = 0,
2x - 3y + 1 = 0;
3) (3x + y - 4 = 0,
5x + y - 10= 0;
5) (x + 5y + 2 = 0,
0,5x – y - 6 = 0;​

👇
Ответ:
kitten0908
kitten0908
15.06.2020
1) y=x
2) 2x+3y=-1
3) 3x+y=4
4) 5x+y=10
5) x+5y=-2
6) x-2y=12
Стандартный вид
4,4(64 оценок)
Открыть все ответы
Ответ:
ксюша1704
ксюша1704
15.06.2020
Все отношения между числами симметричные, т.е. если взаимно поменять местами, скажем, a и b , то ничего не изменится, всё будет работать как прежде.

Значит, мы можем переставить все числа, так,
чтобы оказалось, что c b a 1 .

Введём новые переменные \{ x , y , k , m , n \} \in N .

И будем искать такие комбинации a, a+x, a+x+y , чтобы

( [ a + 1 ] + x + y ) | ( 2a+x ) ,
( [ a + 1 ] + x ) | ( 2a+x+y ) и
( a + 1 ) | ( 2a+2x+y ) .

Начнём с первого требования, оно эквивалентно утверждению, что:

k ( [ a + 1 ] + x + y ) = 2a + x ;

(k-1) x + ky = 2a - k [ a + 1 ] ;

При k 1 , правая часть отрицательная, а левая положительна, что не возможно.

Значит, k = 1 \ ; \ \Rightarrow y = a - 1 ;

Теперь подставим вместо y его значение y = a - 1 и будем искать такие комбинации a, a+x, 2a+x-1 , чтобы:

( 2a + x ) | ( 2a+x ) – теперь всегда будет выполняться с k = 1 ,
( [ a + 1 ] + x ) | ( 3a+x-1 ) и
( a + 1 ) | ( 3a+x-1 ) .

Проанализируем второе требование, оно эквивалентно утверждению, что:

m ( [ a + 1 ] + x ) = 3a+x-1 ;

(m-1) x = 3a - 1 - m [ a + 1 ] ;

При m 2 , правая часть отрицательная, а левая положительна, что не возможно.

При m = 1 \ ; \ \Rightarrow 0 = 2a - 2 \ ; \ \Rightarrow a = 1 , но это не подходит по условию.

Значит, m = 2 \ ; \ \Rightarrow x = a - 3 ;

Теперь подставим вместо x его значение x = a - 3 и будем искать такие комбинации a, 2a-3, 3a-4 , чтобы:

( 3 [ a - 1 ] ) | ( 3 [ a - 1 ] ) – теперь всегда будет выполняться с k = 1 ,
( 2 [ a - 1 ] ) | ( 4 [ a - 1 ] ) – теперь всегда будет выполняться с m = 2 ,
( a + 1 ) | ( 5a-7 ) .

Проанализируем последнее требование, оно эквивалентно утверждению, что:

n ( a + 1 ) = 5a - 7 ;

na + n = 5a - 7 ;

5a - na = 7 + n ;

( 5 - n ) a = 7 + n ;

a = \frac{ 7 + n }{ 5 - n } = \frac{ 12 + n - 5 }{ 5 - n } = \frac{ 12 }{ 5 - n } - \frac{ 5 - n }{ 5 - n } = \frac{ 12 }{ 5 - n } - 1 ;

Сумма всей комбинации – это:

S = a + (2a-3) + (3a-4) = 6a-7 = 6(a-1)-1 = 6( \frac{ 12 }{ 5 - n } - 2 ) - 1 ,

максимум которой достигается при минимальном значении

в знаменателе дроби \frac{ 12 }{ 5 - n } , т.е. при n = 4 .

Тогда сумма всей комбинации S = 6( \frac{ 12 }{ 5 - n } - 2 ) - 1 = 6( \frac{ 12 }{ 5 - 4 } - 2 ) - 1 =

= 6( \frac{ 12 }{ 1 } - 2 ) - 1 = 6( 12 - 2 ) - 1 = 6 \cdot 10 - 1 = 60 - 1 = 59 ;

О т в в е т : 59 .
4,4(69 оценок)
Ответ:
misharudakov2
misharudakov2
15.06.2020

а) 308 м, 247,5 м, 209м

б) В 5,5 раз.

Пошаговое объяснение:

а) Раз треугольники подобны, то их стороны по определению пропорциональны.

Давайте для наглядности обозначим эти два треугольника буквами : первый пускай будет △ABC, а второй — △DEF. В таком случае можно сделать такую запись: △ABC ~ △DEF (знак тильда должен находиться на уровне букв).

Теперь составляем такую запись :   \frac{AB}{DE} =\frac{BC}{EF} =\frac{AC}{AF}

Подставляем известные стороны :  \frac{56}{DE} =\frac{45}{247,5} =\frac{38}{AF}

И вычисяем две неизвестные стороны второго треугольника :

1 :  

DE = \frac{247,5*56}{45} = 308 м

AF = \frac{247,5*38}{45} = 209  м

2 (через коэффициент пропорциональности) :

k = \frac{247,5}{45} = 5,5

DE = 56 * 5,5 =308 м

AF = 38*5,5 = 209 м

ответ : Остальные две стороны второго треугольника равны 308 м и 209 м.

б) P(△ABC) = 45 + 56 + 38 = 139 м

P(△DEF) = 308 + 247,5 + 209 = 764,5 м

\frac{764,5}{139} = 5,5

ответ : Периметры участков отличаются в 5,5 раз (тот же коэффициент пропорциональности).

4,8(84 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ