М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
akikjiro
akikjiro
17.10.2022 15:56 •  Математика

Как зная координаты точек вершин треугольника найти координаты конца биссектрисы

👇
Ответ:
YukineeKawaiiNo
YukineeKawaiiNo
17.10.2022

Как составить уравнение биссектрисы треугольника по координатам его вершин Используя уравнение биссектрисы угла:

 

 

Пример.

Даны вершины треугольника A(-5;4), B(7;-1) и C(3;10).

1) Составить уравнение биссектрисы треугольника ABC, выходящей из вершины A.

2) Найти длину этой биссектрисы.

1) Угол A образован прямыми AB и AC. Составим уравнения этих прямых.

Уравнение прямой, проходящей через две точки, можно найти, например, по формуле  

 

 

Уравнение прямой AB:

 

 

 

 

Уравнение прямой AC:

 

 

 

 

Подставляем уравнения прямых AB и AC в формулы уравнения биссектрис угла:

 

 

 

 

 

 

 

 

и

 

 

то есть

 

 

и

 

 

Из этих уравнений является уравнением биссектрисы внутреннего угла BAC треугольника, другое — биссектрисой внешнего угла при вершине A. Как отличить уравнение биссектрисы внутреннего угла?

Точки B и C лежат по одну сторону от биссектрисы внешнего угла, поэтому при подстановке координат B и C в уравнение мы получим числа одинакового знака. От биссектрисы внутреннего угла B и C лежат по разные стороны, поэтому подстановка их координат в уравнение биссектрисы внутреннего угла даёт нам числа разных знаков.

Подставляем в уравнение x-8y+37=0 координаты B и C.  

B(7;-1):  7-8·(-1)+37>0

C(3;10):  3-8·10+37<0.

Таким образом, уравнение x-8y+37=0 является уравнением биссектрисы AF треугольника ABC.

2) Чтобы найти длину биссектрисы, найдём точку пересечения прямых AF и BF.

Уравнение прямой BC:

 

 

 

 

Координаты точки пересечения прямых AF и BC находим из системы уравнений  

 

 

Решение системы —  

 

 

Длину биссектрисы AF находим по формуле расстояния между точками A и F:

 

 

 

 

 

 

Пошаговое объяснение:

Как составить уравнение биссектрисы треугольника по координатам его вершин Используя уравнение биссектрисы угла:

 

 

Пример.

Даны вершины треугольника A(-5;4), B(7;-1) и C(3;10).

1) Составить уравнение биссектрисы треугольника ABC, выходящей из вершины A.

2) Найти длину этой биссектрисы.

1) Угол A образован прямыми AB и AC. Составим уравнения этих прямых.

Уравнение прямой, проходящей через две точки, можно найти, например, по формуле  

 

 

Уравнение прямой AB:

 

 

 

 

Уравнение прямой AC:

 

 

 

 

Подставляем уравнения прямых AB и AC в формулы уравнения биссектрис угла:

 

 

 

 

 

 

 

 

и

 

 

то есть

 

 

и

 

 

Из этих уравнений является уравнением биссектрисы внутреннего угла BAC треугольника, другое — биссектрисой внешнего угла при вершине A. Как отличить уравнение биссектрисы внутреннего угла?

Точки B и C лежат по одну сторону от биссектрисы внешнего угла, поэтому при подстановке координат B и C в уравнение мы получим числа одинакового знака. От биссектрисы внутреннего угла B и C лежат по разные стороны, поэтому подстановка их координат в уравнение биссектрисы внутреннего угла даёт нам числа разных знаков.

Подставляем в уравнение x-8y+37=0 координаты B и C.  

B(7;-1):  7-8·(-1)+37>0

C(3;10):  3-8·10+37<0.

Таким образом, уравнение x-8y+37=0 является уравнением биссектрисы AF треугольника ABC.

2) Чтобы найти длину биссектрисы, найдём точку пересечения прямых AF и BF.

Уравнение прямой BC:

 

 

 

 

Координаты точки пересечения прямых AF и BC находим из системы уравнений  

 

 

Решение системы —  

 

 

Длину биссектрисы AF находим по формуле расстояния между точками A и F:

 

 

 

 

 

 

4,5(78 оценок)
Открыть все ответы
Ответ:
irinazakharova1
irinazakharova1
17.10.2022

ответ:250 с

Пошаговое объяснение:

Записываем все страницы в книге как 100%.

Поскольку в первый день ученик прочитал 30% книги, значит после этого ему осталось прочесть:

100% - 30% = 70% книги.

Таким образом, во второй день он прочитал:

70% * 40% / 100% = 2800 / 100 = 28% (от всей книги).

Из этого следует, что в третий день процент страниц, которые прочел ученик был равен:

70% - 28% = 42%.

Данное процентное значение соответствует 105 страницам, поэтому всего в книге было:

105 / 42% / 100% = 105 / 0,42 = 250 страниц.

4,7(59 оценок)
Ответ:
ifraank
ifraank
17.10.2022
1) целую часть откладываем, пока ее не трогаем
2) смотрим на знаменатель обеих дробей
3) нужно найти наименьшее число, которое будет делится и на 16, и на 20 (в данном случаем это 80, 80:16=5, 80:20=4)
4) после того как мы нашли это число, делим на него наши знаменатели, и записываем их как дополнительный множитель (на верху’
5) переписываем целые части
6) умножаем числители на дополнительные множители
7) получившиеся числа записываем в числитель
8) вычитаем отдельно целую часть и числитель дроби
9) записываем ответы на свои места
10) готово, дробная часть правильная, сократить не можем
в объяснением один пример решить
4,4(8 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ