5x² + 3x - 8 > 0
5x² + 3x - 8 = 0
D = 9 + 8·4·5 = 169 = 13²
5(x - 1)(x + 1,6) > 0
(x - 1)(x + 1,6) > 0
x ∈ (-∞; -1,6) U (1; +∞)
(2x² - 3x + 1)(x - 3) ≥ 0
2x² - 3x + 1 = 0
D = 9 - 2·4 = 1
2(x - 1)(x - 0,5)(x - 3) ≥ 0
(x - 1)(x - 0,5)(x - 3) ≥ 0
- 0,5 + 1 - 3 +
• • • > x
x ∈ [0,5; 1] U [3; +∞)
x² - 2x - 15 ≥ 0
x² - 2x + 1 - 4² ≥ 0
(x - 1)² - 4² ≥ 0
(x - 1 - 4)(x - 1 + 4) ≥ 0
(x - 5)(x + 3) ≥ 0
x ∈ (-∞; -3] U [5; +∞)
Нули числителя: x = -1; 2/3; 2,5.
Нули знаменателя: x = -3; 1
- -3 + -1 - 2/3 + 1 - 2,5 +
°• • °• > x
ответ: x ∈ (-3; -1] U [2/3; 1) U [2,5; +∞).
Подробнее - на -
Пошаговое объяснение:
В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС.
Находим стороны треугольника SDC:
DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549.
SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6.
Высота из вершины S является высотой пирамиды SО.
Находим её по формуле:
Подставим значения:
a b c p 2p
16.155494 15 6 18.577747 37.15549442
и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145.
Площадь основания пирамиды находим по формуле Герона:
a b c p 2p S
17 17 10.583005 22.291503 44.58300524 85.48684109.
Площадь основания можно выразить так:
S = 85.48684109 = √7308 = 6√(7*29).
Тогда получаем объём пирамиды:
V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.