КАК НАЙТИ ОБЩИЙ ЗНАМЕНАТЕЛЬ
Как найти общий знаменатель, что такое общий знаменатель и конечно же нахождение общего знаменателя онлайн на нашем калькуляторе. И если вам требуется наименьший общий знаменатель, то он тут.
И! Вне зависимости от класса - общий знаменатель находят одинаково!
НАХОДИМ ОБЩИЙ ЗНАМЕНАТЕЛЬ
Что такое общий знаменатель?
Формула общего знаменателя + методы нахождения
Как найти общий знаменатель дробей онлайн
Что такое наименьший общий знаменатель - НОЗ?
Формула наименьшего общего кратного
Как найти наименьший общий знаменатель на калькуляторе
Как найти общий знаменатель трех дробей
Как найти общий знаменатель дробей с разными знаменателями
Скопировать ссылку
ЧТО ТАКОЕ ОБЩИЙ ЗНАМЕНАТЕЛЬ?
Кроме понятия "общий знаменатель", есть еще такое понятие как - "Наименьший общий знаменатель (НОЗ)" - это... тоже самое, что и "НОК". Поэтому, мы не будем это разбирать здесь второй раз.
НО ЧТО ТАКОЕ ОБЩИЙ ЗНАМЕНАТЕЛЬ ПРОСТЫМИ СЛОВАМИ?
Общий знаменатель - это любое целое число, которое делится без остатка на первый и второй знаменатель.
Количество чисел, которые могут быть общим знаменателем стремится к бесконечности, но обычно общим знаменателем принимают НОЗ
ПРИМЕР ОБЩЕГО ЗНАМЕНАТЕЛЯ :
Для того, чтобы понять, "что такое общий знаменатель" нам нужен пример двух дробей и какое-то действие(иначе смысла в этом нет), пусть это будут две дроби 1/2 и 1/3 и действие сложение - "+".
Для таких маленьких чисел, как 2 и 3 - "нок" будет равен 6. Для этого нам никакие инструменты не понадобятся, наверняка вы это тоже смогли посчитать в уме.
Т.е. 6 делится на 2 без остатка 6 : 2 = 3, и 6 делится на 3 без остатка 6 : 3 = 2.
Мы получили два числа, первую дробь 1/2 надо умножить на 3, чтобы привести её к общему знаменателю 6 - 1*3/2*3 = 3/6.
А вторую дробь нужно умножить на 2, чтобы привести и её к общему знаменатель 6, 1*2/3*2 = 2/6.
После того, как мы нашли общий знаменатель, мы можем произвести действие, в нашем случае - "+" - 3/6 + 2/6 = (3 + 2)/6 = 5/6.
Когда мы нашли "общий знаменатель" мы смогли выполнить необходимое действие с дробями.
Прежде чем приступать к поиску общего знаменателя, давайте найдем общий знаменатель для двух знаменателей, а потом проверим данное решение на калькуляторе.
Пусть это будут два знаменателя 20 и 6.
Раскладываем больший знаменатель на множители :
20 = 2 * 2 * 5
Раскладываем на множители второй знаменатель :
8 = 2 * 2 * 2
Исключаем повторяющиеся множители во втором знаменателе и у нас остается одна двойка.
Умножаем больший знаменатель на 2 :
20 * 2 = 40
Итого получаем их общий знаменатель 40.
arcsin (-1) = -π/2 = -90°
arcsin (-√3/2) = -π/3 = -60°
arcsin (-√2/2) = -π/4 = -45°
arcsin (-1/2) = -π/6 = -30°
arcsin (0) = 0 = 0°
arcsin (1/2) = π/6 = 30°
arcsin (√2/2 ) = π/4 = 45°
arcsin (√3/2 ) = π/3 = 60°
arcsin (1 ) = π/2 = 90°
arccos (-1) = π = 180°
arccos (-√3/2) = (5π)/6 = 150°
arccos (-√2/2) = (3π)/4 = 135°
arccos (-1/2) = (2π)/3 = 120°
arccos (0) = π/2 = 90°
arccos (1/2) = π/3 = 60°
arccos (√2/2 ) = π/4 = 45°
arccos (√3/2 ) = π/6 = 30°
arccos (1 ) = 0 = 0°
arctg (-√3) = -π/3 = -60°
arctg (-1) = -π/4 = -45°
arctg (-1/√3) = -π/6 = -30°
arctg (0) = 0 = 0°
arctg (1/√3) = π/6 = 30°
arctg (1) = π/4 = 45°
arctg (√3) = π/3 = 60°
arcctg (-√3) = (5π)/6 = 150°
arcctg (-1) = (3π)/4 = 135°
arcctg (-1/√3) = (2π)/3 = 120°
arcctg (0) = π/2 = 90°
arcctg (1/√3) = π/3 = 60°
arcctg (1) = π/4 = 45°
arcctg (√3) = π/6 = 30°