Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Y=11x+ln =11x+11 ln(x+15) Для нахождения наименьшего значения функции находим первую производную данной функции y ' =(11x +ln) ' =11+ 11 = = Решаем уравнение (находим критические точки) y '=0 11x+154=0 ⇒ 11x = - 154 ⇒ x= - 154/11 = -14 При x < -14 производная функции отрицательна (функция убывает), при x > -14 производная функции положительна (функция возрастает), значит в критической точке x = -14 функция принимает минимум, найдем это значение y(-14) =11*(-14) - 11ln(-14+15) = -154 -11*ln 1 = -154 -11*0= -154 ответ: -154