Испытание состоит в том, что из 20 вопросов выбирают 8.
n=C⁸₂₀=20!/((20-8)!·8!)=13·14·15·16·17·18·19·20/(2·3·4·5·6·7·8)=13·17·3·19·10=
=
Пусть событие А - " из восьми вопросов знает ответ на 5, не знает на три"
Событию А благоприятствуют исходы:
m=C⁵₁₄·C³₆ - пять вопросов из четырнадцати выученных и три вопроса из шести невыученных
m= (14!/(14-5)!·5!)· (6!/(6-3)!·3!)= ((10·11·12·13·14)/(2·3·4·5)) · (4·5·6/(2·3))=
=11·13·14·4·5
По формуле классической вероятности
p(A)=m/n=(11·13·14·4·5)/(13·17·3·19·10)=(11·14·2)/(17·3·19)=308/969
Пошаговое объяснение: Рішення:
22+18=40 (км/год) швидкість зближення двох катерів.
120÷40=3 (год). Через 3 години вони зустрінуться.
Відповідь: через 3 години.
Обернена задача:
Від двох пристаней відстань між якими 120 км, одночасно назустріч один одному відійшли два катери. Швидкість першого катера 18 км/год. Через 3 години відбулася зустріч. Яка швидкість другого катера?
Рішення:
18*3=54 (км) пройшов перший катер до зустрічі.
120-54=66 (км) пройшов другий катер до зустрічі.
66÷3=22 (км/год) швидкість другого катера.
Відповідь: 22 км/год.
Обернена задача:
Від двох пристаней одночасно назустріч один одному, відійшли два катери. Швидкість одного катера 18 км/год, а другого 22 км/год. Через 3 години відбулася зустріч. Яка відстань між двох пристаней?
Рішення:
18+22=40 (км/год) швидкість зближення двох катерів.
40*3=120 (км) відстань між двох пристаней.
Відповідь: 120 км.