Пусть угол САД = х, а угол САВ = у, АВ = ВС = а.
Из равнобед. тр-ка АВС выразим АС:
АС = 2а*cosу. Из условия угол АВС = 4* уголДВС = 4*(2х-у) = 8х-4у ( так как угол ДВС = угол СОД - у, а угол СОД = 2х - по свойству внешнего угла треугольника, который равен сумме двух внутренних). Теперь применяя для тр. АВС теорему синусов: АС/синАВС = а/сину, или (2а* косу)/син(8х-4у) = а/сину. Получим отсюда уравнение: 2у = 8х-4у.
4х=3у.
Получим еще одно уравнение для этих неизвестных, используя чисто угловые соотношения в треугольнике. Из тр-ка АВС угол АВС = 180 - 2у. Приравняв к полученному ранее 8х-4у, получим :
4х-у = 90 Решив полученную систему, найдем:
х=33,75 гр
у = 45 гр.
ответ: 33,75 гр.
Sполн=2Sосн+Sбок
Sосн=a^2*sqrt{3}/4, где а-длина ребра призмы
Sбок=3а^2, т.к. все три боковые стороны-квадраты со стороной а.
Sполн=2*a^2*sqrt{3}/4 + 3а^2 = a^2*sqrt{3}/2 + 6а^2/2=
a^2(sqrt{3}+6)/2
Sполн=4+8sqrt{3} (по условию)
a^2(sqrt{3}+6)/2=4+8sqrt{3}
a^2=2*4(1+2sqrt{3})/(sqrt{3}+6)
a^2=8(1+2sqrt{3})/(sqrt{3}+6)
Sосн=a^2 sqrt{3}/4=8(1+2sqrt{3})*sqrt{3}/(4(sqrt{3}+6))=
=2sqrt{3}(1+2sqrt{3})/(sqrt{3}+6)=
=2(sqrt{3}+2*3)/(sqrt{3}+6)=
=2(sqrt{3}+6)/(sqrt{3}+6)=2
ответ: 2