1) -4у + 10 > 2(1 - у) + 24
-4у + 10 > 2 - 2y + 24
-4y + 2y > 2 + 24 - 10
-2y > 16
y < -8
2) 49 - 3(3 - 2z) < 1 - 4z
49 - 9 + 6z < 1 - 4z
6z + 4z < 1 - 49 + 9
10z < - 39
z < - 3,9
3) 7(6 - 5t) - 5 < 1 - 41t
42 - 35t - 5 < 1 - 41t
-35t + 41t < 1 - 42 + 5
6t < -36
t < -6
4) -0,5(8x + 9) - 0,9 > 4x - 3
-4x - 4,5 - 0,9 > 4x - 3
-4x -4x > -3 + 4,5 + 0,9
-8x > 2.4
x < -0.3
Пошаговое объяснение:
Пусть число, прочитанное по часовой стрелке с позиции a1, делится на 27:
N1 = {a1a2a3...a666}
Рассмотрим натуральное число, прочитанное с позиции a2 по часовой стрелке:
N2 = {a2a3a4...a666a1}
Это число может быть получено из числа {a1a2a3...a666} простым преобразованием:
N2 = 10 * (N1 - a1 * 10^665) + a1 = 10 * N1 - a1*( 10^666 -1 )
Заметим, что число: 10^666 -1 состоит из 666 девяток, а значит может быть представлено в виде: 9*1111111 (всего 666 единиц).
Поскольку сумма цифр числа: 1111111 (всего 666 единиц) равна 666, то есть делится на 3, то по признаку делимости на 3: 1111111 (666 единиц) делиться на 3.
Таким образом: 10^666 -1 делится на 27, при этом N1 также делиться на 27, а значит N2 делится на 27.
Как видим, если сместить кратное 27 число на 1 позицию, то полученное число тоже будет делиться на 27, иначе говоря, двигая поочередно данное число по 1 позиции, убеждаемся, что прочитанное по часовой стрелке число с любого места, тоже будет делиться на 27.
Что и требовалось доказать.
P.S можно было оформить по методу мат. индукции, но было лень.
6 клеточек длина автомобиля равна 4,2 м
отсюда 4,2:6=0,7м одна клетка, всего клеток 16, значит 0,7*16=11,2м=112см