М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
помогите5132
помогите5132
07.08.2020 08:59 •  Математика

Вычислите: 6 2/3(шесть целых, две третьих) : 2 2/9(две целых, две девятых) + 5/8 * 32/45 - 5 5/6 (пять целых, пять шестых)

👇
Открыть все ответы
Ответ:
Одно я знаю точно, что город электросталь внёс весомый вклад в великой отечественной войне. в честь этого в 2013 году, городу было присвоено звание "город воинской и трудовой славы"• в 1941 году в связи с военным положением страны, вся промышленность была перенаправлена на производство военного снаряжения (выпускалось около 80 видов боеприпасов). • впервые был поставлен на производство выпуск реактивных снарядов для "катюш". • можно сказать что каждый 3-ий снаряд для фронтов изготавливался в электростали. • в 1945 г. снарежательный завод стал первым, который вошёл в атомную программу по разработке и производству ядерного оружия.
4,6(30 оценок)
Ответ:
2Hello3
2Hello3
07.08.2020
Решаем, как обычное квадратное уравнение.
D = (3a-1)^2 - 4*1(-(a+1)) = 9a^2-6a+1+4a+4 = 9a^2-2a+5
Этот дискриминант сам корней не имеет, то есть > 0 при любом а.
x1 = (3a-1-√(9a^2-2a+5))/2
x2 = (3a-1+√(9a^2-2a+5))/2
Теперь нужно проверить, что оба корня по модулю больше 1.
Очевидно, что x2 > x1. Возможно 3 варианта.

1) Оба корня меньше -1. Достаточно проверить x2.
(3a-1+√(9a^2-2a+5))/2 < -1
3a-1+√(9a^2-2a+5) < -2
√(9a^2-2a+5) < -3a-1
Корень арифметический, поэтому
-3a-1 > 0; 3a+1 < 0; a < -1/3
9a^2-2a+5 < (-3a-1)^2
9a^2-2a+5 < 9a^2+6a+1
4 < 8a; a > 1/2.
Но a < -1/3, поэтому решений нет.

2) Оба корня больше 1. Достаточно проверить x1.
(3a-1-√(9a^2-2a+5))/2 > 1
3a-1-√(9a^2-2a+5) > 2
3a-3 > √(9a^2-2a+5)
Корень арифметический, поэтому
3a-3 > 0; a-1 > 0; a > 1
9a^2-18a+9 > 9a^2-2a+5
4 > 16a; a < 1/4
Но a > 1, поэтому решений нет.

3) Один корень меньше -1, другой больше 1. x1 < x2, поэтому
{ (3a-1-√(9a^2-2a+5))/2 < -1
{ (3a-1+√(9a^2-2a+5))/2 > 1
Умножаем на 2
{ 3a-1-√(9a^2-2a+5) < -2
{ 3a-1+√(9a^2-2a+5) > 2
Переносим корни отдельно
{ 3a-1+2 < √(9a^2-2a+5)
{ √(9a^2-2a+5) > 2-3a+1
Корни арифметические, поэтому:
а) Если 3a+1 < 0, то есть a < -1/3, то 1 неравенство верно всегда.
б) Если 3a+1 >=0, то a >= -1/3
в) Если 3-3a < 0, то есть а > 1, то 2 неравенство верно всегда.
г) Если 3-3а >= 0, то а <= 1.
Возводим всё в квадрат
{ 9a^2+6a+1 < 9a^2-2a+5
{ 9a^2-2a+5 > 9-18a+9a^2
Приводим подобные
{ 8a < 4; a < 1/2 при а >= -1/3
{ -4 > -16a; a > 1/4 при а <= 1
ответ: а принадлежит (1/4; 1/2)
4,5(8 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ