Пусть событие А - изделие окажется бракованным и рассмотрим гипотезы :
H_1-H
1
− изделие изготовлено первым поставщиком;
H_2-H
2
− изделие изготовлено вторым поставщиком;
H_3-H
3
− изделие изготовлено третьим поставщиком
Из условия P(H_1)=\dfrac{200}{1000}=0.2;~ P(H_2)=\dfrac{300}{1000}=0.3;~ P(H_3)=\dfrac{500}{1000}=0.5P(H
1
)=
1000
200
=0.2; P(H
2
)=
1000
300
=0.3; P(H
3
)=
1000
500
=0.5 и условные вероятности
\begin{gathered}P(A|H_1)=5\%:100\%=0.05\\ P(A|H_2)=6\%:100\%=0.06\\ P(A|H_3)=4\%:100\%=0.04\end{gathered}
P(A∣H
1
)=5%:100%=0.05
P(A∣H
2
)=6%:100%=0.06
P(A∣H
3
)=4%:100%=0.04
По формуле полной вероятности, вероятность получения со склада бракованного изделия равна
\begin{gathered}P(A)=P(A|H_1)P(H_1)+P(A|H_2)P(H_2)+P(A|H_3)P(H_3)=\\ \\ =0.2\cdot 0.05+0.3\cdot 0.06+0.5\cdot 0.04=0.048\end{gathered}
P(A)=P(A∣H
1
)P(H
1
)+P(A∣H
2
)P(H
2
)+P(A∣H
3
)P(H
3
)=
=0.2⋅0.05+0.3⋅0.06+0.5⋅0.04=0.048
Тогда вероятность получения со склада годного изделия равна
\overline{P(A)}=1-P(A)=1-0.048=0.952
P(A)
=1−P(A)=1−0.048=0.952
ответ: 0,952.
188 ≥ х ≥ 35(ответ в общем виде, где сумма х=17n+1)
Либо множество 188, 171, 154, 137, 120, 103, 86, 69, 52, 35.
Пошаговое объяснение:
Минимальные двузначные числа - это 10.
Максимальные двузначные числа - это 99.
Деление на 17 с остатком 1 запишем как 17n+1, где n - натуральное число.
Получаем выражение:
198 ≥ 17n+1 ≥ 20
197/17≈11,58≥n (значит максимальное значение n=11
19/17≈1.12≤n (знаачит минимальное значение n=2, т.к. n-натуральое число)
11*17+1 ≥ х ≥ 2*17+1
188 ≥ х ≥ 35(ответ в общем виде, где сумма х=17n+1)
Либо множество 188, 171, 154, 137, 120, 103, 86, 69, 52, 35.
1.2 все таки правильно .