М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Diana6079
Diana6079
07.07.2020 19:12 •  Математика

X + 7y = 1 выразить х через у​

👇
Ответ:
DarknEssDk11
DarknEssDk11
07.07.2020

х через у

х+7у=1

х=1-7у

у через х

x + 7y = 1

7у = 1 - х

у = \frac{1-x}{7}

4,5(80 оценок)
Открыть все ответы
Ответ:
1) Превращаем числа в десятичные дроби:
2+785/1000 = 2+0,785= 2,785;
2,904 (это число и так представлено в виде десятичной дроби);
27/10,2+98/100 = (27:10,2) + 0,98= 2,6470588235 + 0,98= 3,6270588235;
1+199/100= 200/100= 2;
2715/1000= 2,715;
2+7/10+4/100= (2+0,7)+(0,04) =2,7+0,04= 2,74;
2 (это число и так представлено в виде десятичной дроби);

Расставляем десятичные дроби в убывающем порядке:
3,6270588235; 2,904; 2,785; 2,74; 2,715; 2; 2.

2) Расставляем десятичные дроби в порядке возрастания:
3,01; 3,09; 3,1; 3,101; 13,1; 13,14.
4,5(98 оценок)
Ответ:
Cet31072007
Cet31072007
07.07.2020

Вообще говоря, эту задачу можно решать с метода множителей Лагранжа, но я постараюсь обойтись без них. Задача максимизировать произведение abc трех положительных чисел при условии постоянства суммы a²+b²+c² их квадратов. Понятно. что вместо произведения чисел можно рассмотреть произведение их квадратов, а обозначив их буквами x, y, z соответственно, получаем более симпатичную формулировку: максимизировать произведение   xyz положительных чисел при условии x+y+z=K (K - некоторое положительное число).

z=K-x-y;\ f(x,y)=xy(K-x-y)=Kxy-x^2y-y^2x.

f'_x=Ky-2xy-y^2;\ f'_y=Kx-x^2-2xy.

Как всегда в таких задачах, ищем точки, в которых обе частные производные равны нулю (иными словами, точки, в которых первый дифференциал df=f'_x\, dx+f'_y\, dy равен нулю):

\left \{ {{Ky-2xy-y^2=0} \atop {Kx-x^2-2xy=0}} \right.;\ \left \{ {{K-2x-y=0} \atop {K-x-2y=0}} \right.; \left \{ {{x=K/3} \atop {y=K/3}} \right. . Сокращение на x и y оправдано их положительностью.  (Кстати, если даже попробовать представить себе параллелепипед с нулевой стороной, шансов у такого вырожденца иметь наибольший объем нет никаких.) Далее теория советует исследовать второй дифференциал d^2f=f''_{xx}(dx)^2+2f''_{xy}\, dx\, dy+f''_{yy}(dy)^2  в найденных критических точках на положительную или отрицательную определенность с критерия Сильвестра. Давайте последуем этим советам.

f''_{xx}=-2y;\, f''_{xx}(\frac{K}{3};\frac{K}{3})=-\frac{2K}{3}; \, f''_{xy}=K-2x-2y;\, f''_{xy}(\frac{K}{3};\frac{K}{3})= -\frac{K}{3};

f''_{yy}=-2x;\, f''_{yy}(\frac{K}{3};\frac{K}{3})=-\frac{2K}{3}.

Видим, что угловой минор первого порядка -2K/3<0;  угловой минор второго порядка K²/3>0. Значит, второй дифференциал отрицательно определен, а это в условиях равенства нулю дифференциала первого порядка означает наличие точки максимума.

Итак, доказано, что наибольший объем среди параллелепипедов с фиксированной диагональю имеет куб.

4,6(72 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ