1. Найти среднее арифметическое чисел: 13,84; 14,23; 12,66 и 15,03.
2. Турист шел 6 ч со скоростью 5 км/ч и 2 ч ехал на автомашине со скоростью 45 км/ч. Найдите среднюю скорость движения туриста на всем пути.
3. Среднее арифметическое двух чисел равно 1,36. Одно число в 2,4 раза меньше другого. Найдите эти числа.
4. Поезд шел 2 ч со скоростью 80 км/ч и 3 ч со скоростью 90 км/ч. Найдите среднюю скорость поезда на пройденном за это время пути.
5. Среднее арифметическое двух чисел 1,68. Одно число в 3,2 раза больше другого. Найдите эти числа
6. Среднее арифметическое четырех чисел 1,4, а среднее арифметическое трех других чисел равно 2,1. Найдите среднее арифметическое этих семи чисел.
ЗАРАНИЕ ЭТО ПОСЛЕДНИИ!
х = 2у² - 4у + 3, даёт уравнение параболы, повёрнутой относительно оси Ох.
Приведение заданного уравнения к каноническому виду дано в приложении.
Для нахождения точек пересечения параболы х - 2у² + 4у - 3=0 с прямой x - 2у + 1=0 сделаем подстановку х = 2у - 1 в уравнение параболы:
2у - 1 - 2у² + 4у - 3 = 0,
2у² - 6у + 4 = 0 или, сократив на 2:
у² - 3у + 2 = 0.
Квадратное уравнение, решаем относительно y: Ищем дискриминант:
D=(-3)^2-4*1*2=9-4*2=9-8=1;Дискриминант больше 0, уравнение имеет 2 корня:
y₁=(√1-(-3))/(2*1)=(1-(-3))/2=(1+3)/2=4/2=2;y₂=(-√1-(-3))/(2*1)=(-1-(-3))/2=(-1+3)/2=2/2=1.
Находим значения х:
х₁ = 2у - 1 = 2*2 - 1 = 3,
х₂ = 2*1 - 1 = 1.