М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mma0509
mma0509
22.02.2022 18:41 •  Математика

28 целых 2 и 21 дробом - ( 14 целых 17 и 21 дробом + 11 целых 8 и 21 дробом) =?

👇
Открыть все ответы
Ответ:
стланка
стланка
22.02.2022
усть Х км/ч-собственная скорость катера, а У км/ч скорость реки. Скорость катера по течению составляет(х+у)км/ч, а скорость катера против течения-(х-у)км/ч. За 2 часа по озеру катер проплывает 2х км, а плот за 15 часов проплывает по реке 15у км. Эти расстояния равны между собой. Против течения реки за 6 часов катер х-у)км, а по течению за 4 часа-4(х+у). Разница между расстоянием против течения и расстоянием по течению реки составила 6(х-у)-4(х+у)или 10 км. Составим и решим систему уравнений:2х=15у6(х-у)-4(х+у)=10 х=15у:26х-6у-4х-4у=10 х=7,5у2х-10у=10 х=7,5у2*7,5у-10у=10 х=7,5у15у-10у=10 х=7,5у5у=10 х=7,5уу=10:5 х=7,5уу=2 х=7,5*2у=2 х=15у=2 ответ: собственная скорость катера 15 км/ч. 
4,7(55 оценок)
Ответ:
AwesomeLeva
AwesomeLeva
22.02.2022

Я докажу первое и последнее, остальное - сам.

1)

Доказательство "⇒".

Пусть у нас дано ((A∪B)⊂C), докажем тогда, что

1.1) A⊂C,

и

1.2) B⊂C.

1.1) x∈A⊂A∪B, ⇒ x∈A∪B⊂С, ⇒ x∈C. То есть A⊂C.

1.2) x∈B⊂A∪B, ⇒ x∈A∪B⊂C, ⇒ x∈C. То есть B⊂C.

чтд.

Доказательство "<=".

Пусть у нас дано: A⊂C и B⊂C. Докажем тогда, что

A∪B⊂C.

Пусть x∈A∪B, ⇔ x∈A или x∈B.

a) x∈A⊂C, ⇒ x∈C.

б) x∈B⊂C, ⇒ x∈C.

То есть A∪B⊂C.

чтд.

4)

Доказательство "⇒".

Пусть у нас дано (A⊂(B∪C)). Докажем тогда, что

((A\cap B^c)\subset C

Пусть x\in A\cap B^c, ⇔ x\in A и x\in B^c, ⇔

x\in A и x\notin B

Тогда т.к. A⊂B∪C, имеем

x\in B\cup C и x\notin B

((x\in B)\vee (x\in C))\wedge (x\notin B)

Первый случай. Если x∈B и x∉B, то x∈∅⊂C ⇒ x∈C.

Второй случай. Если x∈C и x∉B, то x∈C\B⊂C, ⇒ x∈C.

чтд.

Доказательство "<=".

Пусть у нас дано A\cap B^c \subset C, докажем тогда, что

A⊂ B∪C.

Пусть x∈A. Тут возможны два варианта x∈B, либо x∉B.

Случай первый: x∈A и x∈B, ⇒ x∈A∩B⊂B, ⇒ x∈B⊂B∪C, ⇒ x∈B∪C.

Случай второй: x∈A и x∉B, ⇒ x\in A и x\in B^c, ⇒

x\in A\cap B^c \subset C, ⇒ x∈C⊂B∪C, ⇒ x∈B∪C.

чтд.

4,8(30 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ