Прямая - бесконечна (не имеет ни начала, ни конца), поэтому и линейная функция не может "начинаться" где-то, в том числе и в нуле.
В зависимости от вида формулы график линейной функции может проходить через начало координат - точку (0; 0). Такую линейную функцию называют прямой пропорциональностью.
Например, у = -2х + 3 - линейная функция, график которой прямая, не проходит через (0;0). А у = 3х - линейная функция (точнее прямая пропорциональность), график которой прямая, проходит через (0;0).
После разрыва листа или части листа на 3 частей, количество всех частей увеличится на 3-1=2 части, после разрыва листа или части листа на 5 частей, количество всех частей увеличится на 5-1=4 части. Изначально листов (частей) было 9 - нечетное, после любого разрыва на 3 или на 5 частей общее количество частей будет пополнятся на четное число, а значит суммарное число останется нечетным (нечетное+четное дает нечетное), а значит каким образом не совершались разрывы общее число при подсчете будет нечетным, 100- четное число, следовательно получить после нескольких заявленных операций 100 частей невозможно. ответ: нет
Графиком линейной функции является прямая.
Прямая - бесконечна (не имеет ни начала, ни конца), поэтому и линейная функция не может "начинаться" где-то, в том числе и в нуле.
В зависимости от вида формулы график линейной функции может проходить через начало координат - точку (0; 0). Такую линейную функцию называют прямой пропорциональностью.
Например, у = -2х + 3 - линейная функция, график которой прямая, не проходит через (0;0). А у = 3х - линейная функция (точнее прямая пропорциональность), график которой прямая, проходит через (0;0).