Задание 1.
(4,1x + 2,5) – (2,3x + 3,9) = 1,6x;
4,1x + 2,5 - 2,3x - 3,9 = 1,6x;
4,1x - 2,3x - 1,6x = - 2,5 + 3,9;
0,2x = 1,4;
x = 1,4 ÷ 0,2;
x = 7.
ответ: 7.
Задание 2.
5ax = 14 – x , при x = 4.
5a × 4 = 14 - 4;
20a = 10;
a = 10 ÷ 20;
a = 0,5.
ответ: 0,5.
Задание 3.
5x − 0,4 (7x − 9) = 2,94;
5x - 2,8x + 3,6 = 2,94;
5x - 2,8x = 2,94 - 3,6;
2,2x = -0,66;
x = -0,66 ÷ 2,2;
x = -0,3.
ответ: -0,3.
Задание 4.
−3 (2,1x − 4) − 1,9 = 2,6 + 1,2 (0,5 − 5x);
-6,3x + 12 - 1,9 = 2,6 + 0,6 - 6x;
-6,3x + 6x = 2,6 + 0,6 - 12 + 1,9;
-0,3x = -6,9;
x = -6,9 ÷ (-0,3);
x = 23.
ответ: 23.
Удачи Вам! :)
ответ:
пошаговое объяснение:
x^2+3x+2< =0
(x+1)(x+2)< =0
x € [-2; -1]
нам надо, чтобы этот отрезок попал целиком внутрь промежутка - решения 2 неравенства.
x^2 + 2(2a+1)x + (4a^2-3) < 0
d/4 = (2a+1)^2 - (4a^2-3) = 4a^2+4a+1-4a^2+3 = 4a+4
если это неравенство имеет два корня, то d/4 > 0
a > -1
x1 = -2a-1-√(4a+4) < -2
x2 = -2a-1+√(4a+4) > -1
тогда решение 1 неравенства [-2; -1] целиком находится внутри решения 2 неравенства [x1; x2].
{ -√(4a+4) = -2√(a+1) < = 2a-1
{ √(4a+4) = 2√(a+1) > = 2a
из 1 неравенства
2√(a+1) > = 1-2a
4(a+1) > = 1-4a+4a^2
4a^2-8a-3 < = 0
d/4 = 4^2+4*3=16+12=28=(2√7)^2
a1=(4-2√7)/4=1-√7/2 ~ -0,323
a2=(4+2√7)/4=1+√7/2 ~ 2,323
a € [1-√7/2; 1+√7/2]
из 2 неравенства
а+1 > = a^2
a^2-a-1 < = 0
d=1+4=5
a1 = (1-√5)/2 ~ -0,618
a2 = (1+√5)/2 ~ 1,618
a € [(1-√5)/2; (1+√5)/2]
ответ: a € [1-√7/2; (1+√5)/2]