М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
4992554419
4992554419
10.05.2021 08:15 •  Математика

Доказать, что радиус вписанной окружности в прямоугольный треугольник (угол С=90*) со сторонами а, в, с равен r=( a+в-с ):2.

👇
Ответ:
yul19758694
yul19758694
10.05.2021

Вписанная окружность делит стороны треугольника на отрезки, равные от вершины до точек касания.

Отрезки касательных, проведенных из одной точки к окружности, равны.

Если катеты равны a и b, то  расстояние от вершины угла до точки касания равно:

на катете а =a-r,

на катете b=b-r.

Гипотенуза с равна сумме отрезков касательных из острых углов до точек касания.

с=a-r+b-r= a+b-2r

c-(a+b)=-2r домножим обе части уравнения на -1

r=(a+b-c):2, что и требовалось доказать.

4,8(4 оценок)
Открыть все ответы
Ответ:
odyvanchik22
odyvanchik22
10.05.2021

Пошаговое объяснение:

1. Когда могут возникнуть дробные числа?

Дробные числа возникают когда предмет ( яблоко , торт , лист бумаги) или единицу измерения ( метр , час , килограмм ) делят на несколько равных частей

2.Каким образом записывают обыкновенные дроби?

Обыкновенные дроби записывают с двух натуральных чисел и черты дроби

3.Как называют число, записанное над чертой дроби?Под чертой дроби?

Число записанное над чертой дроби называется числитель , а под чертой дроби – знаменатель

4.Что показывает знаменатель дроби?Числитель дроби?

Знаменатель показывает на сколько частей что-то разделили, а числитель показывает , сколько таких частей взяли.

4,6(26 оценок)
Ответ:
jonni0203
jonni0203
10.05.2021
Докажем, что при любом натуральном и выражение А(n) = 4n + 15n - 1 кратно 9. Используем стандартную схему доказательства: 1. При n = 1 выражение A(1) = 41 + 15 · 1 - 1 = 18 кратно 9. 2. Предположим, что при n = k выражение А(k) = 4k + 15k - 1 кратно 9, т. е. 4k + 15k - 1 = 9р (где р - натуральное число). 3. При n = k + 1 надо доказать, что выражение А(k +1) = 4k+1 + 15(k + 1) - 1 делится на 9. Для доказательства можно использовать два й Поступим, как и в примере 1, т. е. выделим в выражении А(k + 1) часть А(k), которая делится на 9. Для этого преобразуем выражение А(k + 1) к виду А(k +1) = 4k+1 + 15k + 14 = 4(4k + 15k - 1) – 45k + 18 = 4 А(k) + 9(2 – 5k). Видно, что выражение А(k + 1) является суммой двух слагаемых, каждое из которых делится на 9. Сложность этого состоит в умении в выражении А(k + 1) выделить часть А(k), т. е. догадаться до преобразования 4k+1 + 15k + 14 = 4(4k + 15k - 1) – 45k + 18. Поэтому рассмотрим другой лишенный такого недостатка. 2-й Из выражения 4k + 15k - 1 = 9р (пункт 2) найдем 4k = 9р + 1 – 15k и подставим в выражение А(k +1) = 4k+1 + 15k + 14 = 4(9p + 1 – 15k) + 15k + 14 = 36p + 18 – 45k. Видно, что выражение A(k + 1) состоит из трех слагаемых, каждое из которых делится на. 9. Связь между пунктами 2 и 3 была обеспечена за счет того, что в пункте 2 была найдена величина 4k и подставлена в выражение пункта 3. Заметим, что если на число п накладываются по условию задачи ограничения, то необходимо ввести новое натуральное число т и свести задачу к старой схеме.
4,5(27 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ