Попробуем установить закономерность в значениях остатков от деления степеней на 9 1) степень 23 23/9=2(5), 23²/9=529/9=58(7), 23³=12167/9=1351(8), если продолжить возводить 23 в степень и вычислять остатки по получится следующая повторяющаяся последовательность остатков a(n)={5,7,8,4,2,1,5,.. а дальше все повторяется} a(1)=a(7)=a(13)= a(n)=a(6n+1) - формула повторения ближайшее к 34 число кратное 6 это 30, 34=6*5+4, определим какой у этой степени остаток от деления на 9 а следующие будут повторяться a(1)=a(6*5+1)=a(31)=5 a(2)=a(32)=7 a(3)=a(33)=8 a(4)=a(34)=4 остаток от деления 23^34 на 9=4
2) аналогично рассуждая можно установить закономерность для 56^67 56/9=6(2), 56²/9=3136/9=348(4),56³/9=175616(8), получится повторяющаяся последовательность остатков b(n)={2,4,8,7,5,1,2} b(1)=b(7)=b(13), b(n)=b(6n+1) 67=6*11+1 b(1)=b(6*11+1)=2 остаток от деления 56^67 равен 2
(23^34+56^67)/9=(23^34/9)+(56^67/9)=x(4)+y(2) где х и у -целые части от деления степеней на 9 суммарный остаток=4+2=6
1. а) 8*8=8*7+8 б) 8*8=8*9-8 в) 8*6=6*8+0 2. 1) 12/3=4 блина осталось. 2) 12+4=16 блинов испекла бабушка. ответ 16 блинов. 3. 1 отрывок з 3х звен кузнец расковал на 3 отдельных звена и ими соединил оставшие 4 отрывка цепи. (Это выглядит так ___0___0___0___ ) 4. Чтобы шесть девочек могли покататься друг с другом парами, есть 15 вариантов, нужно 15*15=225 минут это 3 часа 45 минут. 15 вариантов это: 1-вая и 2-рая девочка; 1-вая и 3-тья девочка; 1-вая и 4-тая девочка; 1-вая и 5-тая девочка; 1-вая и 6-тая девочка; 2-рая и 3-тья девочка; 2-рая и 4-тая девочка; 2-рая и 5-тая девочка; 2-рая и 6-тая девочка; 3-тья и 4-тая девочка; 3-тья и 5-тая девочка; 3-тья и 6-тая девочка; 4-тая и 5-тая девочка; 4-тая и 6-тая девочка; 5-тая и 6-тая девочка.
1) степень 23
23/9=2(5), 23²/9=529/9=58(7), 23³=12167/9=1351(8), если продолжить возводить 23 в степень и вычислять остатки по получится следующая повторяющаяся последовательность остатков
a(n)={5,7,8,4,2,1,5,.. а дальше все повторяется}
a(1)=a(7)=a(13)=
a(n)=a(6n+1) - формула повторения
ближайшее к 34 число кратное 6 это 30, 34=6*5+4, определим какой у этой степени остаток от деления на 9 а следующие будут повторяться
a(1)=a(6*5+1)=a(31)=5
a(2)=a(32)=7
a(3)=a(33)=8
a(4)=a(34)=4
остаток от деления 23^34 на 9=4
2) аналогично рассуждая можно установить закономерность для 56^67
56/9=6(2), 56²/9=3136/9=348(4),56³/9=175616(8),
получится повторяющаяся последовательность остатков
b(n)={2,4,8,7,5,1,2}
b(1)=b(7)=b(13),
b(n)=b(6n+1)
67=6*11+1
b(1)=b(6*11+1)=2
остаток от деления 56^67 равен 2
(23^34+56^67)/9=(23^34/9)+(56^67/9)=x(4)+y(2) где х и у -целые части от деления степеней на 9
суммарный остаток=4+2=6
ответ 6