Модуль - расстояние на координатной прямой от точки до некой другой точки. Модуль числа обозначается с двух сторон вертикальными линиями (|x|).
Модуль всегда равняется положительному числу, (то есть не может равняться отрицательному числу! т.к. по это расстояние, а расстояние не может быть отрицательным), т. е. модуль положительного числа равен положительному числу, модуль отрицательного числа также равен положительному числу.
У одноклассников Пети может быть 0, 1, 2, ..., 28 друзей – всего 29 вариантов. Но если кто-то дружит со всеми, то у всех не меньше одного друга. Поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. В обоих случаях остается 28 вариантов: 1, 2, ..., 28 или 0, 1, ..., 27. Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B. Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников. Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д. Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14 ответ:14
Пояснение:
Модуль - расстояние на координатной прямой от точки до некой другой точки. Модуль числа обозначается с двух сторон вертикальными линиями (|x|).
Модуль всегда равняется положительному числу, (то есть не может равняться отрицательному числу! т.к. по это расстояние, а расстояние не может быть отрицательным), т. е. модуль положительного числа равен положительному числу, модуль отрицательного числа также равен положительному числу.
Например, |123| = 123; |- 645| = 645; и т. д.
Из этого и будем отходить при решении.
|8x - 6| = 14;
1. 8x - 6 = 14;
8x = 14 + 6;
8x = 20;
x = 20 ÷ 8;
x₁ = 2,5.
2. 8x - 6 = - 14;
8x = - 14 + 6;
8x = - 8;
x = - 8 ÷ 8;
x₂ = - 1.
ответ: (-1; 2,5).
Удачи Вам! :)