Пошаговое объяснение:
Рассмотрим девятизначное число вида a₁a₂a₃a₄a₅a₆a₇a₈a₉=a₁·10⁸+a₂·10⁷+a₃·10⁶+a₄·10⁵+a₅·10⁴+a₆·10³+a₇·10²+a₈·10¹+a₉, у которого все цифры различны.
Разобъём данные девять цифр на пары (a;10-a)={(1;9); (2;8); (3;7);(4;6);(5;5);(6;4);(7;3);(8;2);(9;1)}
Сопоставим каждое девятизначное число из условия другому числу след образом.
a₁a₂a₃a₄a₅a₆a₇a₈a₉,↔(10-a₁)(10-a₂)(10-a₃)(10-a₄)(10-a₅)(10-)(10-a₆)(10-a₇)(10-a₈)(10-a₉)
Однозначность такого сопоставления очевидно
Сумма любых двух чисел из таких пар равна
(a₁·10⁸+a₂·10⁷+a₃·10⁶+a₄·10⁵+a₅·10⁴+a₆·10³+a₇·10²+a₈·10¹+a₉)+
(10-a₁)·10⁸+(10-a₂)·10⁷+(10-a₃)·10⁶+(10-a₄)·10⁵+(10-a₅)·10⁴+(10-a₆)·10³+(10-a₇)·10²+(10-a₈)·10¹+a₉)=
10·10⁸+10·10⁷+10·10⁶+10·10⁵+10·10⁴+10·10³+10·10²+10·10¹+10=
=10⁹+10⁸+10⁷+10⁶+10⁵+10⁴+10³+10²+10¹+10=1111111110
Количество же таких пар равно 9!/2
Значить сумма всех чисел удовлетворяющих условию равна
1111111110·9!/2=1111111110·7!·36 что кратно 111111111
Ч.Т.Д.
Даны координаты вершин пирамиды A1А2А3А4:
A1 (0, –1, 1), A2 (1, –6, 3), A3 (1, –5, 0), A4 (–2, 0, –2).
Найти: а) угол между ребрами A1А2 и A1А3;
x y z СумКвад. Длина ребра
Вектор А1А2={xА2-xA1, yА2-yA1, zА2-zA1} 1 -5 2 = √30 = 5,47723
Вектор А1А3={xА3-xA1, yА3-yA1, zА3-zA1} 1 -4 -1 = √18 = 4,24264.
cos A = (1*1 + (-5)*(-4) + 2*(-1)) / (6*√5) = 19/(√30*√18) = 19/√540 = 19/(6√15).
Угол А равен arc cos(19/(6√15) = 0,6135 радиан или 35,1518 градуса.
б) площадь грани A1 А2 А3;
Площадь грани A1 А2 А3 равна половине модуля векторного произведения:
S = (1/2)|A1А2*A1А3|.Координаты векторов найдены выше:
A1 A2: (1; -5; 2), A1 A3: (1; -4; -1).
i j k| i j
1 -5 2| 1 -5
1 -4 -1| 1 -4 = 5i + 2j - 4k + 1j + 8i + 5k =
= 13i + 3j + 1k.
Модуль равен √(13² + 3² +1²) = √179 ≈ 13,3791.
Площадь S = (1/2)* √179 ≈ 6,6895.
в) уравнение плоскости A1A2A3
Для составления уравнения плоскости используем формулу:
x – xA1 y – yA1 z – zA1
xА2 – xA1 yА2 – yA1 zА2 – zA1
xА3 – xA1 yА3 – yA1 zА3 – zA1 = 0
Подставим данные: A1 (0, –1, 1), A2 (1, –6, 3), A3 (1, –5, 0) и упростим выражение:
x - 0 y - (-1) z - 1
1 - 0 -6 - (-1) 3 - 1
1 - 0 -5 - (-1) 0 – 1 = 0
x y + 1 z - 1
1 -5 2
1 -4 -1 = 0
x * ((-5)·(-1)-2·(-4)) - (y + 1) * (1·(-1)-2·1) + (z - 1) * (1·(-4)-(-5)·1 = 0
13 x + 3 y + 3 + 1z - 1 = 0
13x + 3y + 1z + 2 = 0.
г) уравнение высоты, проходящей через A4;
Нормальный вектор плоскости А1А2А3 является направляющим вектором высоты из вершины А4 на грань A1А2А3.
Точка А4 (–2, 0, –2), вектор (13; 3; 1).
Уравнение высоты: (x + 2)/13 = y /3 = (z + 2)/1.
д) объём пирамиды.
Объём пирамиды V = (1/6)*|(A1А2xA1А3)*A1А4|.
A1А2xA1А3 = 13 3 1
А1А4 = -2 1 -3
A4 (–2, 0, –2) - A1 (0, –1, 1) = (-2; 1; -3).
(1/6)*|(A1А2xA1А3)*A1А4| = (1/6)*|(-26 + 3 - 3)| = 26/6 = 13/3 куб.ед.