1. Если вероятность того, что случайно выбранное число кратно указанным, то : P(кратно 2) = 15/30 = 1/2 = 50 процентов - четных чисел ровно половина P(кратно 3) = (30/3)/30 = 10/30 = 1/3 ~ 33 процента - каждое третье кратно 3, а т.к. 30 делится нацело на 3, то таких чисел будет ровно 10. P(кратно 5) = (30/5)/30 = 6/30 = 1/5 = 20 процентов - каждое пятое кратно 5, а т.к. 30 делится нацело на 5, то таких чисел будет ровно 6. 2. Не знаю, что такое схема, поэтому просто распишу все, что тут можно получить.
Каждый ребенок может быть либо мальчиком, либо девочкой, т.к. всего детей 3, то возможны 2^3 = 8 вариантов. Эти 8 вариантов равновероятны и составляют полную группу событий. Но они нам не интересны, т.к. их можно свести к 4 основным группам по количеству детей разного пола: 3 девочки 1 мальчик + 2 девочки 2 мальчика + девочка 3 мальчика
При этом очевидно, что две крайних группы состоят всего лишь из одного события, а две средних включают по 3 события(на примере 1 мальчик + 2 девочки: м д д, д м д, д д м). Как мы помним все события равновероятны, т.о. вероятность группы равна сумме вероятностей событий или количеству событий умноженному на 1/8.
Примем коэффициент пропорциональности отрезков, на которые боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности, за х, а основание - за у. Тогда периметр треугольника равен 2*(2х+7х) + у = 110. По свойству точки касания 2х = у/2 или у = 4х (так как треугольник равнобедренный). Подставим эту зависимость в первое уравнение. 2*9х + 4х = 110, 22х = 110, х = 110/22 = 5. Отсюда находим стороны треугольника: - боковые стороны равны 2*5+7*5 = 10 + 35 = 45, - основание равно 110 - 2*45 = 110 - 90 = 20.
Пошаговое объяснение:
ответ во вложении......