1)Изделие имеет скрытые дефекты с вероятностью 0,2. В течение года выходит из строя 75% изделий со скрытыми дефектами и 15% изделий без дефектов. Найти вероятность, что изделие имело скрытые дефекты, если оно вышло из строя в течение года.
2)В четырех группах 100 студентов (по 25 человек в каждой). Для участия в
олимпиаде отобрано 5 человек. Какова вероятность того, что среди них окажутся
представители всех четырех групп?
3)Известны
вероятности
независимых событий А В и С
Р (А) = 0,5; Р (В) = 0,4; Р (С) = 0,6. Определить вероятность того, что произойдет по
крайней мере одно из этих событий.
4)Вероятность того, что студент найдет в библиотеке нужную ему книгу, равна
0,3. Составить закон распределения числа библиотек, которые он посетит, если в городе 4 библиотеки
разложим на множители: 12=2*2*3 и 32=2*2*2*2*2
б) 14 и 42 наибольший общий делитель 14 (14:14=1 и 42:14=3)
разложим на множители:
14=2*7 и 42=2*3*7
в) 68 и 102 наибольший делитель 34 (68:34=2 102:34=3)
разложим на множители:
68= 2*2*17 и 102=2*3*17
г) 480 и 669 наибольший общий делитель 3 (480:3=160 и 669:3=223)
разложим на множители:
480=2*2*2*2*2*3*5 669=3*223
д) 23 и 96 и 112 наибольший общий делитель для этих 3-х чисел 1 (число 23 можно разложить только на множители 1 и 23, 96 и 112 на 23 не делятся)
разложим на множители:
23=23*1 и 96=2*2*2*2*2*3 и 112=2*2*2*2*7
для чисел 96 и 112 - наибольший делитель 16 (96:16=6, 112:16=7)
е) 21 и 126 и 252 наибольший общий делитель 21 (21:21=1, 126:21=6, 252:21=12)
разложим на множители:
21=7*3 и 126=2*3*3*7 и 252=2*3*3*7